
IEEE TRANSACTIONS ON CLOUD COMPUTING 1

Compatibility-aware Cloud Service
Composition Under Fuzzy Preferences of

Users
Amir Vahid Dastjerdi, Member, IEEE and Rajkumar Buyya, Senior Member, IEEE

Abstract—When a single Cloud service (i.e., a software image and a virtual machine), on its own, cannot satisfy all the user
requirements, a composition of Cloud services is required. Cloud service composition, which includes several tasks such as
discovery, compatibility checking, selection, and deployment, is a complex process and users find it difficult to select the best
one among the hundreds, if not thousands, of possible compositions available. Service composition in Cloud raises even new
challenges caused by diversity of users with different expertise requiring their applications to be deployed across difference
geographical locations with distinct legal constraints. The main difficulty lies in selecting a combination of virtual appliances
(software images) and infrastructure services that are compatible and satisfy a user with vague preferences. Therefore, we
present a framework and algorithms which simplify Cloud service composition for unskilled users. We develop an ontology-
based approach to analyze Cloud service compatibility by applying reasoning on the expert knowledge. In addition, to minimize
effort of users in expressing their preferences, we apply combination of evolutionary algorithms and fuzzy logic for composition
optimization. This lets users express their needs in linguistics terms which brings a great comfort to them compared to systems
that force users to assign exact weights for all preferences.

Index Terms—Cloud Computing; Cloud Service Composition; Ontology; Service Level Agreement; Quality of Service

F

1 INTRODUCTION

IN order to deliver their solutions, application ser-
vice providers can either utilize the Platform-

as-a-Service (PaaS) offerings such as Google App
Engine and OpenShift or develop their own host-
ing environments by leasing virtual machines from
Infrastructure-as-a-Service (IaaS) providers like Ama-
zon EC2 or GoGrid. However, most PaaS services
have restrictions on the programming language, de-
velopment platform, and databases that can be used
to develop applications. Such restrictions encourage
service providers to build their own platforms using
IaaS service offerings.

One of the key challenges in building a platform for
deploying applications is to automatically compose,
configure, and deploy the necessary application that
consists of a number of different components. If we
consider the deployment requirements of a web appli-
cation service provider, it will include security devices
(e.g. firewall), load balancers, web servers, application
servers, database servers, and storage devices. Setting
up such a complex combination of appliances is costly
and error prone even in traditional hosting environ-
ments [1], let alone in Clouds. Virtual appliances

• A.V Dastjerdi and R. Buyya are with the Department of Computing
and Information Systems, The University of Melbourne, Australia.
R. Buyya also serves as a Visiting Professor for the University of
Hyderabad, India; King Abdulaziz University, Saudi Arabia; and
Tsinghua University, China.

provide an elegant solution for this problem. They
are built and configured with a necessary operating
system and software packages to meet software re-
quirements of a user.

In IBM smart Cloud, Amazon EC2, GoGrid,
Rackspace, and other key players in the IaaS market,
users first have to select their software solution (asset
catalogs, images, etc.) and then select the proper
virtual machine configuration (e.g. instance type) to
host the software solution. Furthermore, a user may
require more than one virtual appliance and machine,
and a composition of them that can meet all the
requirements of users is required. However, the se-
lection of the best composition is a complex task and
none of the providers provide any ranking system to
choose the best instance type and software solution
for the deployment.

In addition, the best choices found for individual
appliances cannot be simply put together as they may
not be compatible with the hosting environment. For
example, if an appliance format is OVF it cannot
currently be deployed on Amazon EC2. Moreover,
there exist legal constraints imposed by countries such
as the USA on importing and exporting of appliances
from a provider to another. Dealing with all these
complexities is costly and aggravating for unskilled
users and encourages them to seek professional help.

In this paper, to simplify the process of selecting the
best virtual appliance and unit (computing instance)
composition, a novel framework is presented. The
framework proposes:

IEEE TRANSACTIONS ON CLOUD COMPUTING 2

• An approach to help non-expert users with lim-
ited or no knowledge on legal and virtual appli-
ance image format compatibility issues to deploy
their services flawlessly. For this purpose, we first
automatically build a repository of Cloud services
in Web Service Modeling Language (WSML)
[2] and then enrich it with experts’ knowledge
(lawyers, software engineers, system administra-
tors, etc.) on the aforementioned constraints. The
knowledgebase then is used for reasoning in an
algorithm that identifies whether a set of Cloud
services consisting of virtual appliance and units
are compatible or not.

• A Cloud service composition optimization tech-
nique that allows non-expert Cloud users to set
their preferences using high level if-then rules
and get user friendly recommendations on the
composition solution’s prominence. The majority
of end users avoid systems that incur complex-
ity in capturing their constraints, objectives and
preferences. An example of such systems is the
one which require users to assign weights to
their objectives. In this case, users have to find
a way to prioritize their preferences and then
map them to weights. After that, the system
has to find out how precise users have gone
through the process of weight assignment. To
tackle this issue, a major objective of this research
is to offer ranking system for Cloud service (i.e.
virtual appliance and machine) composition that
let users express their preferences conveniently
using high-level linguistic rules. Our system then
utilizes multi-objective evolutionary approaches
and fuzzy inference system to precisely capture
the entered preferences for ranking purpose.

2 ARCHITECTURE

Our proposed architecture offers a unified solution
that uniquely applies state of the art technologies
of semantic services, agent negotiation, and multi-
objective and constraints optimization to satisfy the
requirements of whole service deployment life cycle.
The main goal of the architecture is to provide: ease
of use for non-experts, semantic interoperability, more
precise discovery and selection, more reliable Service
Level Agreement (SLA) monitoring, and automatic
negotiation strategy. The proposed architecture is de-
picted in Figure 1 and its main components are de-
scribed below:

1) User Portal: All services provided by the system
are presented via the web portal to clients. This
component provides graphical interfaces to cap-
ture users’ requirements such as software, hard-
ware, QoS requirements (including maximum
acceptable latency between tiers, minimum ac-
ceptable reliability, and budget), firewall, and
scaling settings. In addition, it transforms user

Appliance
Service

Repository

Virtual Unit
Service

Repository

Software,
QoS Requirements,
Security constraints, and
Deployment pattern

1

Composition Optimizer

Image Packaging DecommissioningFailure

Recovery

PlanningDeployment

Descriptor Manager

Monitoring and

SLA Management

Discovery &SLA Negotiation

Discovery Negotiator

Account
Manager

Appliance
Administration

Service

User Portal

Tr
a

n
sl

a
to

r

Tr
a

n
sl

a
to

r

m Service contracting and deployment management

l Deployment optimization

k Building semantically
rich Cloud service
repository

k Building semantically
rich Cloud service
repository

j Request

Infrastructure as a Service Providers

Fig. 1: Architecture’s main components that facilitates
QoS-aware deployment of user applications.

requirements to WSMO format in the form of
goals which are then used for Cloud service
discovery and composition. For more details
regarding the format of goals, readers can refer
to our previous work [3]. Moreover, it contains
an account manager, which is responsible for
user management.

2) Translator: Since Web Service Modeling On-
tology (WSMO) is used for service discovery,
Cloud services information is translated to Web
Service Modeling Language (WSML) format by
the Translator component. This component takes
care of building and maintaining an aggregated
repository of Cloud services and is explained in
detail in Section 2.1.

3) Cloud Service Repositories: They are repre-
sented by appliance and virtual unit service
repositories in Figure 1 and allow IaaS providers
to advertise their services. For example, an ad-
vertisement of a computing instance can con-
tain descriptions of its features, costs, and the
validity time of the advertisement. From stan-
dardization perspective, a common metamodel
that describes IaaS provider’s services has to be
created. However, due to the lack of standards,
we developed our own metamodel [3] based on
previous works.

4) Discovery and Negotiation Service: This com-
ponent maps user’s requirements to resources
using the ontology-based discovery technique.
It acts in user’s interest to satisfy quality of
service (QoS) requirements by selecting the set
of eligible IaaS providers. The negotiation ser-
vice uses a time-dependent negotiation strategy
that captures preferences of users on QoS cri-
teria to maximize their utility functions while
only accepting reliable offers. These negotiation

IEEE TRANSACTIONS ON CLOUD COMPUTING 3

strategies are described in our previous work [4].
5) Composition Optimizer: Once the negotiation

completed and eligible candidates are identified,
the composition component, which is the focus
of this paper, builds the possible compositions
and uses the compatibility checking compo-
nent to eliminate incompatible candidates. Then
Composition Optimizer evaluates the composi-
tion candidates using the users’ QoS preferences.
The Composition Optimizer takes advantage of
multi-objective algorithm and fuzzy logic to let
users express their preference conveniently, and
efficiently selects the closest candidates to users’
interests. Throughout the paper we show how
ontology-based compatibility checking, multi-
objective algorithms, and fuzzy logic techniques
can work in harmony to provide an elegant
solution to the composition problem.

6) Planning: The planning component determines
the order of appliance deployment on the se-
lected IaaS providers and plans for the deploy-
ment in the quickest possible manner.

7) Image Packaging: The Packaging component
builds the discovered virtual appliances and the
relevant meta-data into deployable packages,
such as Amazon Machine Image (AMI) or Open
Virtualization Format (OVF) [5] packages. Then
the packages are deployed to the selected IaaS
provider using the deployment component.

8) Deployment Component: It configures and sets
up the virtual appliances and computing in-
stances with the necessary configurations such
as firewall and scaling settings. For example in
a web application, specific connection details
about the database server need to be configured.

9) Deployment Descriptor Manager: This com-
ponent persists specifications of required ser-
vices and their configuration information such
as firewall and scaling settings in a format
called Deployment Descriptor. Besides, it in-
cludes the mapping of user requirements to the
instances and appliances provided by the Cloud.
The mapping includes instance description (e.g.
name, ID, IP, status), image information, etc. This
meta-data is used by the appliance administra-
tion service to manage the whole stack of cloud
services even if they are deployed across mul-
tiple Clouds. Formally described using WSML,
the Deployment Descriptor is located in our
system (as a third party service coordinator),
and in a Cloud-independent format that is used
for discovering and configuring alternative de-
ployments in case of failures. An example of a
Deployment Descriptor is shown in Appendix
B (supplemental material). It identifies how fire-
wall and scaling configurations have to be set
for Web server appliances. In addition, Deploy-
ment Descriptor helps to describe the utility

function of users for provisioning extra Cloud
services when scaling is required. This helps to
create scaling policies that utilize the optimiza-
tion component on the fly to provision services
that maximizes the user’s utility functions. For
example, providers that have the lowest price,
latency, and highest reliability are going to be
ranked higher.

10) Appliance Administration Service: After the
deployment phase, this component helps end
users to manage their appliances (for example
starting, stopping, or redeploying them). It uses
the Deployment Descriptor to manage the de-
ployed services.

11) Monitoring and SLA Management: This com-
ponent provides health monitoring of deployed
services and provides required inputs and data
for failure recovery and scaling. A monitoring
system is provided by this component for fairly
determining to which extent an SLA is achieved.
More details on this component is provided in
our previous paper [6].

12) Failure Recovery: It automatically backs up vir-
tual appliance data and redeploys them in the
event of Cloud service failure.

13) Decommissioning: In the decommissioning
phase, Cloud resources are cleaned up and re-
leased by this component.

14) IaaS Providers: They are in both fabric and uni-
fied resource level [7] and contain resources that
have been virtualized as virtual units. Virtual
unit can be a virtual computer, database system,
or even a virtual cluster. In addition to virtual
units, they offer virtual appliances to satisfy
software requirements of users.

The first step in service composition is modeling the
Cloud services (based on cost, size, functionality, etc.)
and QoS requirements of users. This step not only
allows appliance and virtual unit providers to adver-
tise QoS of their services, but also provides a way
for end users to express their QoS preferences. In this
work, WSMO is extended and used for appliance and
virtual unit QoS modeling. This allows us to model
compatibility and legal constraints required to build
a valid composition. However, the process of con-
verting the Cloud service advertisements to WSML
is time-consuming and error-prone if it is carried out
manually. Automatic construction of WSMO-based
service description from IaaS service advertisements
is described in the next section.

2.1 Construction of Semantic Cloud Services

Currently, there is no integrated repository of
semantic-based services for virtual appliances and
units. The first step towards describing services and
their QoS is to communicate with Clouds and the
Cloud monitoring services through their APIs and

IEEE TRANSACTIONS ON CLOUD COMPUTING 4

Cloud’s API call to
acquire virtual
appliances and units

information

Translator

Component

Monitoring service’s API
call to acquire QoS
Information of Cloud
services

Repository of

semantically rich

Cloud services

Translator component
automatically lifts
functional and non-
functional properties of
Cloud services to ontology

instances

Sync

Component
Integrity
Check

Fig. 2: The process of translation of the virtual appli-
ances and units descriptions to WSML.

gather required meta-data for building the repository.
The process of metadata translation is demonstrated
in Figure 2. The components involved in this process
are:

2.1.1 Integrity Checking
This component first merges output messages of API
calls for acquiring Cloud services description us-
ing Extensible Stylesheet Language Transformations
(XSLT)1 and then compares them with the previously
merged messages using a hash function. If the outputs
of the hash function are not equal, the component
triggers the Sync component to update the semantic
repository.

2.1.2 Sync Component
The goal of this component is to keep the semantic-
based repository consistent with the latest metadata
provided by Cloud providers. As the synchronization
is computing intensive, it is avoided unless the in-
tegrity checking component detects any inconsistency.
It receives the output message that is required for
synchronization and finds the corresponding seman-
tically rich services and updates them with the output
of the translator component.

2.1.3 Translator Component
During the communication of a semantic-level client
and a syntactic-level web service, two directions of
data transformations (which is also called grounding)
are necessary: the client semantic data must be written
in an XML format that can be sent as a request to
the service, and the response data coming back from
the service must be interpreted semantically by the
client. We use our customized Grounding technique
on WSDL operations (that are utilized to acquire
virtual appliance and unit metadata) output to seman-
tically enrich them with ontology annotations. WSMO
offers a package, which utilizes Semantic Annotations
for WSDL (SAWSDL) for grounding [8]. It provides

1. XSLT. http://www.w3.org/TR/xslt

two extensions attribute namely as Lifting Schema
Mapping and Lowering Schema Mapping. Lowering
Schema Mapping is used to transfer ontology to XML
and lifting Schema Mapping does the opposite. In our
translator component, the lifting mapping extension
has been adopted to define how XML instance data
that is obtained from Clouds API calls is transformed
to a semantic model.

As the first step in grounding, from output message
schema, the necessary ontology is created for virtual
units and appliances. The basic steps to build the
ontology from XML schema using WSMO ground-
ing is explained by Kopecky et al. [8]. In this step
our contribution lies on building the ontology from
multiple output message schemas. It means that the
monitoring service output message schema is used
to extend the ontology to encompass non-functional
properties. This can be accomplished by merging two
schemas to construct an output message that describes
the format of the elements that has functional and
non-functional properties such as price and reliability.

Having the ontology available, the next step is
to add the necessary Mapping URI for all element
declarations. For this purpose Modelreferences are
used, which are attributes whose values are lists of
URIs that point to corresponding concepts in the
constructed ontology. Subsequently, we need to add
schema mappings that point to the proper data lift-
ing transformation between XML data and semantic
data. For this purpose, two attributes, namely lift-
ingSchemaMapping and loweringSchemaMapping,
are offered by SAWSDL. These aforementioned at-
tributes are then utilized to point from Cloud virtual
appliance meta-data schema to a XSLT, which shows
how meta-data is transferred from XML to WSML.

We tested this approach for Cloud service reposito-
ries with variety of sizes, and will present the exper-
imental result in Section 5.2.2. The ontology listed in
Appendix A (supplemental materials) was partially
created by the described translator component. For
example, it shows how an appliance meta-data with
ID of "aki00806369" has been translated to WSMO
format.

Semantic service toolkits and libraries based on
OWL-S and WSMO use XML based grounding. This
XML mapping approach cannot deal with the grow-
ing number of Cloud provider’s interfaces that use
non-SOAP and non-XML services. The main reason
that we have used XML is to follow the path that
was suggested by WSMO, standard libraries and doc-
umentation provided by WSMO, and that major IaaS
providers currently have a full support for XML based
services. For alternative approaches of grounding for
non-XML services readers can refer to studies con-
ducted by Lambert et al. [9].

IEEE TRANSACTIONS ON CLOUD COMPUTING 5

3 EVALUATION OF COMPOSITION CRITERIA

The composition problem is to find the best combi-
nation of compatible virtual appliances and virtual
machines that minimizes the deployment cost and
deployment time, and maximizes the reliability while
adhering to composability constraints. A formal de-
scription of the problem is given below.

3.1 Provider and User Request Model
Let m be the total number of providers. Each provider
can provide virtual appliances, virtual units or both,
and is represented as shown in Equation (1).

Provider Pk : {{a} , {vm} , Cdext , Cdint}
where 0 < k ≤ m

(1)

where a, vm, Cdext , Cdint denotes appliance, virtual
machine, Cost of external data transfer and Cost of
internal data transfer respectively. A virtual appliance
a can be represented by a tuple of five elements
(Equation (2)): appliance type, cost, license type, com-
patibility list, and size.

a : {ApplianceType, Cost, LicenseType,
CompatibilityList, Size}

(2)

A virtual machine vm can be formally described as a
tuple with two elements as shown in Equation (3).

vm : {MachineType, Cost} (3)

The user request for the appliance composition can
be translated into a weighted graph G (V,E) where
each vertex represents a server that consists of a
virtual appliance running on a virtual machine. Server
corresponding to vertex v is represented by Equation
(4).

Sv = {av, vmv} ,∀ v ∈ V (4)

Each edge e {v, v′} ∈ E indicates that corresponding
servers communicate. The Data Transfer Rate between
these connected vertexes (i.e. one server to another) is
given by the weight associated to edge e.

3.2 Compatibility
When multiple Cloud services (i.e. virtual appliances
and units) are composed together, they should be
compatible with each other. In this work, we consider
legal and image format compatibility constraints.
However, it should be noted that in reality there will
be other compatibility constraints such as compatibil-
ity between the products installed on the appliances.
• Virtual appliance image format compatibility:

Before we finalize the deployment plan, we have
to find out whether the image formats of cho-
sen set of virtual appliances are compatible with
the destination virtual unit provider. As it is

illustrated in the first row of Table 1, a sample
of ontology-based reasoning on the built knowl-
edgebase (as shown in Appendix A) shows that
image with the ID of "aki00806369" is compatible
with the large instance type provided by Amazon
EC2.

• Legal requirements: In Cloud infrastructure, vir-
tual machines can be deployed in data centers
located in different parts of the world. However,
there are legal requirements, for example US
restrictions on exporting encryption technology
[10], that prevent the export and deployment of
software developed in one country to another.
Hence, we need to ensure that the virtual ap-
pliances can be legally deployed on the selected
virtual units. The second row of the Table 1
presents a query which sets appliance with the ID
of "aki00806369" compilable to only virtual units
provided by Clouds located in a same country
where the appliance provider is situated.

To evaluate the compatibility requirements, first the
Ontology-based vocabulary is created using WSML,
as shown in the Appendix A [line 225], where com-
patibility constraints are imposed by experts in the
form of axioms in the ontology or alternatively by
reasoning on the ontology. For example, the ontology
listed in Appendix A shows how an axiom (set by an
expert) enforces that appliances can only be deployed
on virtual units provided by Cloud providers that are
located in the same country as the appliance provider.
After building the required ontology, we can exploit
the advantages of Description Logic (DL) to query the
knowledgebase and check compatibility constraints of
composition candidates. A WSML-DL query sample,
given in Table 1, shows which virtual unit is com-
patible (legally and regarding image format) to the
appliance with the ID of "aki00806369". Our objective
is to achieve full compatibility among the appliances
in the composition. Based on the compatibility con-
straints considered in our work, the compatibility (C)
can be calculated based on Equation (5).

C =

 0 if there exists at least one pair of
incompatible services;
1 otherwise.

(5)

In addition, Algorithm 1 illustrates the process to eval-
uate the compatibility of the services in a composition.
The algorithm checks the compatibility constraint (by
sending the related query to WSML-reasoner) for each
pair of appliance and virtual unit in the composition,
and only compositions where all constraint queries
are satisfied would be returned as valid. We use
WSMO discovery component for service discovery
and implemented the Algorithm 1 to discard sets of
incompatible discovered services.

IEEE TRANSACTIONS ON CLOUD COMPUTING 6

TABLE 1: Compatibility reasoning for Cloud service composition.

Query String Result
?x[isCompatipleWith hasValue ?y] :- ?x memberOf
virtualAppliance and ?x [hasName hasValue ?v] and
?v=aki00806369 and ?y memberOf virtualUnit and
?y[hasProvider hasValue?pvu] and ?pvu [supportVmFormat
hasValue ?supportedFormat] and ?x[hasFormat hasValue
?format] and ?format[hasName hasValue ?formatName]
and ?supportedFormat[hasName hasValue ?supportedFor-
matName] and ?supportedFormatName=?formatName.

?formatName: "AMI" ?v:
"aki00806369" ?pvu: Amazon-
California ?p: AmazonCalifornia
?supportedFormatName: "AMI"
?format: AMI ?supportedFormat:
AMI ?y: largeInstance ?x:
aki00806369

?x [isCompatipleWith hasValue ?y]:- ?x memberOf
virtualAppliance and ?x [hasName hasValue ?v] and
?v=aki00806369 and ?x[hasProvider hasValue ?p] and
?y memberOf virtualUnit and ?y[hasProvider hasValue
?pvu] and ?p[hasCountry hasValue ?capp] and ?pvu
[hasCountry hasValue ?cvu] and?capp[hasName hasValue
?cappName] and ?cvu[hasName hasValue ?cvuName] and
?cappName=?cvuName.

?v: "aki00806369" ?pvu: Ama-
zonCalifornia ?p: AmazonCalifornia
?capp: USA ?cappName: "USA"
?cvu: USA ?cvuName: "USA" ?y:
largeInstance ?x: aki00806369

Input: Composition c, Constraint List (cl) such as
Image Format and Legal Compatibility

Output: Composition Validity
if CompositionValidity(c, cl) Exists in Cache then

ValidComposition =
GetCompositionValidityFromCache(c, cl);

end
ValidComposition=True;
foreach Appliance a and Virtual Unit vu In c do

foreach Constraint t in cl do
if Compatibility (t, a, vu) Exists in Cache
then

ValidComposition =
GetCompatibilityFromCache(t, a, vu);

end
else

ValidComposition =
CheckCompatibilitybyReasoning(t, a,
vu);

end
InsertCompatibilitytoCache(t, a, vu);

end
if ValidComposition=False then

break;
end

end
InsertCompositionValiditytoCache(c, cl);
return ValidComposition;

Algorithm 1: Compatibility evaluation algorithm

3.3 Cost

The costs involved in procuring and using virtual
appliances can be categorized as follows:

• Acquisition Cost: Costs involved in purchasing
the virtual appliance, such as licensing cost, cost
of the virtual machine and any costs associated
with deployment such as the data transfer costs
to transfer the appliances to the virtual machine
at the IaaS provider.
To build a server Sv , let us assume appliance av
is obtained from provider Pk and virtual machine
vmv is obtained from provider Pl. If this server
run for a duration of T (lease period), the Equa-
tion (6) shows the Acquisition Cost.

AqCost (Sv) = Cost (av,Pk
)× T+

Cost (vmv,Pl
)× T +AppTransCost (k, l)

(6)

where Cost (av,Pk
) is the cost of appliance per

unit of time, Cost (vmv,Pl
) is the cost of virtual

machine per unit of time, and the cost of appli-
ance transfer from appliance provider k to virtual
unit provider l is given by Equation (7).

AppTransCost (k, l) =

 0 if k = l;
Size (av,Pk

)
×Cdext (Pl) if k 6= l.

(7)

• Ongoing Cost: This will include the costs of
running the virtual appliance, such as the cost of
data transfers. In this work we consider only the
costs associated with data transfers as ongoing
costs.
Let v, v′ be two vertexes (servers) on provider l,
connected by edge e {v, v′}. The data transfer cost

IEEE TRANSACTIONS ON CLOUD COMPUTING 7

between the two servers is given by Equation (8):

TransCost (e {v, v′}) = Size
(
Datae{v,v′}

)
× Cdint

(8)
• Decommissioning Cost: Decommissioning cost

primarily includes archival and removal costs of
the data at the end of the application life cycle
such as the data sanitisation, and henceforth as
shown in Equation (9) will depend on the size of
the data stored. The amount of data stored will
vary from server to server.

DecomCost (Sv) = CostPerUnit× SizeOfDatav
(9)

Based on the costs calculated above, Total Cost (TC)
can be computed as shown in Equation (10),

TC =
∑
v∈V

AqCost (Sv) +
∑

e∈Ev,v′∈V

TransCost (e {v, v′})

+
∑
v∈V

DecomCost (Sv)

(10)

3.4 Deployment Time
Virtual appliances significantly minimize the time re-
quired to build and configure the necessary indepen-
dent components. However, size of virtual appliances
ranges from a few megabytes to tens of gigabytes
depending on the applications installed on them and
will impact the time required to transfer and deploy
the appliances from the appliance provider to the
virtual machine provider. Hence, we consider the
deployment time as one of the composition objectives.
The time required to deploy a given appliance av
obtained from provider Pk on a virtual machine vmv

obtained from provider Pl is given by Equation (11),

DT (av,Pk
, vmv,Pl

) =


InitT ime (vmv,Pl

) if k = l;
InitT ime (vmv,Pl

) +
Size(av,Pk)

DataTransferRate(Pk,Pl)
if k 6= l.

(11)

where InitT ime (vmv,Pl
) is the time required to ini-

tialize the appliance on the virtual unit. As appliances
can be deployed in parallel, Total Deployment Time
(TD) will be given by Equation (12),

TD = Max {DT (av,Pk
, vmv,Pl

)} (12)

3.5 Reliability
For measuring Cloud providers reliability, we intro-
duce SLA Confidence Level (SCL), which is a metric
to measure how reliable services of each provider are
based on the SLAs and their performance history.
SCL values are computed by a third party that is

responsible for monitoring the SLA of providers based
on Equation (13):

SCL =

q∑
j=1

(Ij × SCLj) (13)

Where the SCLj is SLA confidence level for QoS
criteria j of a Cloud service; Ij is the importance of
the criteria j for the user; q is the number of monitored
QoS criteria.

We utilized the beta reputation system [11] to assess
the SCL for each criterion. The reason is that the
Monitoring Outcome (MOjt) of a particular quality
of service criteria j in the period of t in the SLA
contract can be modeled as shown in Equation (14),
and therefore it is a binary event. Consequently, the
beta density function, which is shown in Equation
(15), can be efficiently used to calculate posteriori
probabilities of the event. As a result, the mean or
expected value of the distribution can be represented
by Equation (16).

MOjt = {SLAnotviolated, SLAviolated} (14)

f (x|ρ, τ) =
Γ (ρ+ τ)

Γ (ρ) Γ (τ)
xρ−1 (1− x)

τ−1

where 0 ≤ x ≥ 1, ρ < 0, τ > 0, and ρ and

τ are beta distribution parameters.

(15)

µ = E (x) = ρ/ (ρ+ τ) (16)

As mentioned earlier in Section 2, in our architec-
ture a component is responsible for monitoring SLA
contracts. If we assume that the monitoring compo-
nent has detected that SLA violation occurred v times
for provider of p (for total number of n monitored
SLAs). Consequently, considering that p = n − v + 1
τ = v + 1 and , the SCL is equal to the probability
expectation that the SLA is not going to be violated
and is calculated as shown in Equation (17).

SCLj =
n− v + 1

n+ 2
(17)

We modeled availability for SCL generation, as cur-
rent Cloud providers only include "availability": in
their SLAs. The reliability in our work is considered
as a user constraint for each Cloud service.

3.6 Overall Objectives
The final objective is to find a fully compatible service
composition that minimizes the deployment cost and
time, and improves the reliability while adhering to
compatibility constraints as shown in Table 2.

4 COMPOSITION OPTIMIZATION
In our problem we consider three user objectives,
the lowest cost, quickest deployment time, and the

IEEE TRANSACTIONS ON CLOUD COMPUTING 8

TABLE 2: Virtual appliance composition objectives.

Criteria Metric Type Requirement
Compatibility (C) C Constraint To be equal to 1
Total Cost (TC) $ Objective To be minimized
Total Deployment Time (TD) mS Objective To be minimized
Total Reliability (TR) SCL Objective To be maximized

Fuzzy Ranking

EngineMulti-objective

Fitness

Evaluation

Engine

User

Preference

s

Pareto

Front

List

Ranked Pareto

Front List

App1

Y

App 1:

Candidate

List

App2

App3

Appn

IaaS 1:

Candidate List

IaaSV
a

ri
a

b
le

s
 (

G
e
n

e
s)

Fig. 3: Cloud service composition optimization approach.

highest reliability. This makes it infeasible to find an
optimal composition as these objectives can conflict
with each other. One way to address this problem
is to convert the appliance composition problem to
a single-objective problem by asking users to give
weights for all the objectives. However, this approach
is error-prone and impractical, as not all the users
have the knowledge to accurately assign weights to
objectives. Furthermore, since the composition solu-
tions will depend on the capability of users to assign
proper weight to the objectives, additionally we have
to find a way to evaluate the knowledge of users
about each objective to ensure the accuracy of the
approach. As shown in Figure 3, we have tackled
these challenges in two steps:

• First, we find the Pareto front [12] composi-
tion solutions using different multi-objective al-
gorithms (OMOPSO, NSGA-II, and SPEA-II). We
have used Jmetal [13] for this purpose which al-
lows us to define problems by defining each gene
(variable) to point to Cloud service candidates as
shown in Figure 3. Then, we defined necessary
fitness functions for all the defined objectives and
choose the algorithm to solve the problem.

• Second, we help users to describe their pref-
erences using high level "if-then" rules, which
builds our fuzzy engine rule-base to rank the
Pareto front acquired from the previous step. By
doing this we acquire Pareto front once and then
filter it according to the user preferences. This has
a great advantage when compared to the method
offered in [14] as our method does not require
to search the solution space each time the user
preferences change.

Evolutionary algorithms have been effectively ap-
plied for solving optimization problems. Among them
NSGA-II [15] and SPEA-II [16] outperform many
other genetic optimization algorithms [15]. Neverthe-
less, recently other meta-heuristics that work based
on swarm intelligence such as Particle Swarm Opti-
mization (OMOPSO) [17] are also used to tackle multi-
objective optimization problems. In this work, we
perform a comparative study among the algorithms
NSGA-II, SPEA-II, and OMOPSO for the appliance
composition problem to determine which of them will
be suitable for our problem.

Fuzzy logic based ranking: Our proposed fuzzy
inference engine includes three inputs and one output.
Inputs of the system are normalized Deployment
Time (DT), Deployment Cost (DC), and Reliability of
composition, which are all described based on the
same membership functions in Figure 4a. Output of
the fuzzy engine as shown in Figure 4b represents
how desirable the current set of inputs are based on
the fuzzy rule-based indication. It shows the mem-
bership function for output by which we allow the
gradual assessment of the membership of elements
in a set. For example, the value "0" in output means
the solution is highly undesirable whereas the value
"1" shows that the solution is highly desirable. Fuzzy
rules should be defined by the user to describe their
preferences. For example a rule can be defined as:

if DT is low and DC is low and Reliability is high,
composition is highly desirable.

Table 3 shows sample rules that can be expressed
by users. In this work we use a fuzzy engine based on
Mamdani inference system [18] with Centroid of area
defuzzification strategy. Readers can refer to [19] for
detailed information on fuzzy inference systems. Once

IEEE TRANSACTIONS ON CLOUD COMPUTING 9

TABLE 3: Sample high level rules set by users.

DC DT Reliability Composition Desirability
Low Low Low Undesirable
Low Low High Highly Desirable
High Low High Not sure

rules and defuzzification strategy are defined, a fuzzy
inference system can map the inputs of fuzzy engine
to its output. Figure 5 demonstrates how deployment
time, cost, and reliability are mapped to composition
desirability when all rules are set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

D
eg

re
e

of
 M

em
be

rs
hi

p

Low Mid High

(a) Input fuzzy sets.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

D
eg

re
e

of
 M

em
be

rs
hi

p

Highly Undesirable Undesirable Neutral Desirable Highly Desirable

(b) Output fuzzy sets.
Fig. 4: Fuzzy engine input and output fuzzy sets.

5 PERFORMANCE EVALUATION
In order to realize and evaluate the proposed ap-
proach, a number of components and technologies are
utilized. Most importantly, multi-objective algorithms
are implemented in jMetal [13]. After that, Pareto
Front composition solutions from Jmetal have been
passed to our fuzzy-logic based ranking components,
which utilizes jFuzzyLogic [20] to define the member-
ship functions and rules.

5.1 Case Study and Data Collection
We consider a case study of a web-based collabo-
ration application for evaluating performance. The
application allows users to store, manage, and share
documents and drawings related to large construction
projects. The service composition required for this
application includes: Firewall (x1), Intrusion Detection
(x1), Load Balancer(x1), Web Server (x4), Application
Server (x3), Database Server (x1), Database Reporting
Server (x1), Email Server (x1), and Server Health Mon-
itoring (x1). To meet these requirements, our objective
is to find the best Cloud service composition.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

DTDC

C
o
m

p
o
si

ti
o

n
 D

es
ir

a
b

il
it

y

(a) Mapping of DT and DC to composition desirabil-
ity.

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

ReliabilityDT

C
o
m

p
o
si

ti
o

n
 D

es
ir

a
b

il
it

y

(b) Mapping of DT and reliability to composition
desirability.

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ReliabilityDC

C
o
m

p
o
si

ti
o
n

 D
es

ir
a
b

il
it

y

(c) Mapping of DC and reliability to composition
desirability.

Fig. 5: Mapping from QoS criteria values to composi-
tion desirability value.

5.1.1 Cloud Service Provider Information

Cloud service providers details, such as the promised
availability and monitored availability (for calculat-
ing SCL), data transfer costs, and data throughput
between two Cloud service providers (to estimate the
transfer time of virtual appliances) are obtained using
the CloudHarmony service2. When the required data
is not available from them, it is directly obtained from
the Cloud service provider. Similar to the virtual unit
and appliance directory, the module to obtain the
Cloud service provider information also can be used
to update and extend the information in future.

2. CloudHarmony. http://cloudharmony.com/

IEEE TRANSACTIONS ON CLOUD COMPUTING 10

5.2 Results
There are three main experiment results presented in
this section: 1) an investigation of performance of the
translator component, 2) a performance comparison
between the OMOPSO, NSGA-II, and SPEA-II algo-
rithms for the real case study, and 3) examination of
the effectiveness of fuzzy inference system for han-
dling imprecise user preferences. NSGA-II and SPEA-
II algorithms use a population of size of 100, and
maximum number evaluations of 25000. OMOPSO is
configured with 100 particles, with a maximum of 100
leaders and maximum number of iterations of 250. We
have carried out 40 independent runs per experiment
and then statistically analyzed results.

5.2.1 Performance of the Translation Approach
Major Cloud providers have large repository of virtual
appliance and unit services. For example, size of Ama-
zon Web Service repository3 alone is greater than 10.6
megabytes. To increase the efficiency of the translation
approach we only synchronize when the translation
service is triggered by integrity checking component.
We increased the number of services in the repository
by merging repositories from various Cloud providers
to investigate the scalability of our approach in terms
of execution time needed for the translation. For
each case of repository size, we repeated the exper-
iment 30 times and the results are plotted in Figure
6. Regression analysis shows that there is positive
and linear relationship between the repository size
and the translation time. The evidence confirms that
the regression coefficient is 0.6621, which suggests
that if the data size to be translated increases by a
megabyte, translation time increases roughly by 0.6
second. Consequently, the synchronization function
can be executed online in an acceptable time even if a
considerable percentage of virtual appliance and unit
properties are updated.

5.2.2 Performance of the Optimization Approach
Performance of single-objective optimization algo-
rithms can be evaluated by analyzing the best value
achieved by the algorithms. However, in the case of
multi-objective optimization, it is not practical. There
are quality indicators, which can be used to evalu-
ate the quality of the obtained set of solutions, and
determine the convergence and diversity properties
of algorithms. In our experiments, the algorithms are
compared using Execution Time; Inverse Generational
Distance (IGD) [16], which determines convergence of
algorithms; Spread, which determines diversity [21];
and Hypervolume, which determines both. In addi-
tion, it has been complemented by the application of
statistical tests to ensure the significance of the results.

3. The virtual appliance repository can be obtained by calling
DescribeImages service from S3.amazonaws.com/ec2-downloads/
ec2.wsdl

Fig. 6: Execution time of translation for different
repository sizes.

Otherwise, the drawn conclusions may be incorrect
as the differences between the algorithms could have
occurred by chance. As in our problem the Pareto
fronts are not known, applying the aforementioned
quality indicators is not possible. To tackle this issue
and as a common approach, we build a reference
front by collecting all the results of 100 runs of the
algorithms. This helps us to compare the relative
performance of algorithms (Jmetal [13] provides an
automatic way of obtain the reference front).

We start with describing the Hypervolume [22]
indicator which has been widely used and calculates
the volume of dominated portion of the objective
space. The indicator is strictly Pareto-compliant [23]
which means if it values a solution higher than the
other, then that solution set dominates the other one’s.
In addition to Hypervolume, we have also used other
two widely used and recommended indicators [21],
namely IGD and spread. As shown in Equation (18),
IGD works out the average distance of the obtained
solution points from the optimal Pareto fronts (refer-
ence front in our case). Where the di is the Euclidean
distance between the obtained solution points and the
closest member of optimal Pareto front and n is the
number of points in the optimal Pareto front. Hence,
when the achieved solution is in the optimal Pareto
front the IGD is equal to 0.

IGD =

√∑n
i=1 di

2

n
(18)

In addition, spread is a metric to calculate the
broadness and calculated based on Equation (19).

Spread =
df + dl +

∑N−1
i=1

∣∣di − d̄∣∣
df + dl + (N − 1)d̄

(19)

where di is the Euclidean distance between consec-
utive solutions in the obtained solutions. df and dl
are the Euclidean distance between the boundary so-
lutions of the obtained pareto front set. When spread
is equal to zero, it means that the obtained solutions

IEEE TRANSACTIONS ON CLOUD COMPUTING 11

TABLE 4: Statistical comparison of algorithms.

95% CI for Dif-
ference

ANOVA Test

Execution time Spread IGD Hypervolume
NSGA-II-SPEA-II (-2469.5,-2579.4) (0.0476,0.1820) Not Significant Not Significant
NSGA-II-OMOPSO (420.4, 531.1) (0.2002,0.3355) (0.003222,0.009074) (0.00599,0.01848)
SPEA-II-OMOPSO (2944.8, 3055.5) (0.0854,0.2206) (0.002913,0.008765) (0.00372,0.01620)

are well diverse.
The spread, IGD, Hypervolume, and execution time

of three algorithms are compared using Analysis of
Variance (ANOVA) test, as the quality values are
normally distributed and there is no strong evidence
to indicate that variance is not constant. From the
ANOVA table the P-value is less than 0.001, which
strongly suggests that there are differences in mean
spread, IGD, Hypervolume, and execution time be-
tween the algorithms. The algorithm that obtains
smaller spread is capable of acquiring a set of non-
dominated composition solutions with better diver-
sity. In addition, if an algorithm achieves smaller
value for IGD, it is better in converging to Pareto-
optimal front. However, algorithms with larger value
of Hypervolume are more desirable.

In our experiment, when Hypervolume is used
for comparison, OMOPSO outperforms NSGA-II and
SPEA-II as shown in Table 4 and Figure 7b. In ad-
dition, if spread is used for diversity comparison,
as shown in Table 4 and Figure 7c, 95% confidence
interval (CI) for the difference between NSGA-II -
OMOPSO and SPEA-II - OMOPSO are (0.2002, 0.3355)
and (0.0854, 0.2206) respectively. This shows the better
suitability of OMOPSO in achieving higher diversity.
In addition, SPEA-II outperforms NSGA-II in terms of
Spread. Moreover, as Figure 7a illustrates OMOPSO
has the lowest execution time. Furthermore NSGA-II
performs better than the SPEA-II in terms of execution
time. For the convergence comparison, IGD has been
considered. As shown in Figure 7d and in Table 4,
95% CI for differences between NSGA-II - OMOPSO
and SPEA-II - OMOPSO are reported as (0.003222,
0.009074) and (0.002913, 0.008765) respectively, which
shows OMOPSO is better in converging to Pareto-
optimal front.

Figure 8a shows the output of NSGA-II for the
case study appliance composition without considering
user preferences. In this case users would receive a set
of non-dominated composition solutions. It indicates
that all the composition solutions have their own
outstanding characteristics and none of the points
could dominate the others.

In reality, Cloud users at least have some vague
idea regarding their objectives which can be captured
by asking them to set high level linguistic rules.
To emulate the user behavior, in our experiment,
27 sample fuzzy rules are designed similar to the
one described in Section 4. Based on these rules, by
applying fuzzy inference system, we mapped points

in Figure 8a to a number between 0 (least desirable)
and 1 (most desirable). That number was used to color
the points in a way that if the composition solution is
more appealing to the user, the corresponding point
is darker. As shown in Figures 8b and 8c when the
number of preferences defined by the user using the
if-then rule increases, the solution’s prominence also
becomes clearer. As it can be seen in Figure 8d, when
all the 27 rules are set (none of them set as "not sure"),
the majority of points have distinct colors, however
as the number of rules set to "not sure" increases
more and more solutions will have the same color.
As Figure 8d shows two points at the center are the
darkest and therefore are the most appealing solu-
tions. Using these techniques non-expert Cloud users
are now able set their preferences using high level
if-then rules and get user friendly recommendations
on the solution’s prominence. This experiment also
shows how the system could be helpful for end user
with different levels of knowledge of the preferences.
It is worth mentioning that traditionally when end
users are asked to assign weights to the objectives,
they are supposed to have full understanding of their
preferences.

6 RELATED WORK
Konstantinou et al. [24] proposed an approach to plan,
model, and deploy Cloud service compositions. In
their approach, the solution model and the deploy-
ment plan for the composition in Cloud platform are
developed by skilled users and executed by unskilled
users. Likewise, in our system set of compatibility
constraints from experts were captured which would
be utilized to simplify the process of deployment
for end users by eliminating invalid compositions
solutions. However, as they also mentioned, their
work lacks an approach for appliance selection and
their placement on the Cloud which is offered by our
work. Similarly Chieu et al. [25] proposed the use
of composite appliances to automate the deployment
of integrated solutions. However in their work, QoS
objectives are not considered.

Similarly another work has utilized Intuitionistic
Fuzzy Set (IFS) for ranking service compositions in the
context of Grid and SOA [26]. It does not deal with
users’ constraints such as compatibility and when
the problem is NP-hard (like our service composi-
tion problem) the execution time is not acceptable.
Furthermore, in comparison with the work which
considered evolutionary approach such as NSGA-II

IEEE TRANSACTIONS ON CLOUD COMPUTING 12

OMOPSOSPEA-IINSGA-II

4500

4000

3500

3000

2500

2000

1500

1000

500

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s)

(a) Execution time.

OMOPSOSPEA-IINSGA-II

1.00

0.99

0.98

0.97

0.96

0.95

0.94

0.93

H
y

p
er

v
o
lu

m
e

(b) Hypervolume.

OMOPSOSPEA-IINSGA-II

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

S
p

re
a
d

(c) Spread.

OMOPSOSPEA-IINSGA-II

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

I
G

D

(d) IGD.

Fig. 7: Comparison of algorithms using quality indi-
cators.

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

DCDT

R
el
ia
b
il
it
y

(a) NSGA-II pareto front appliance composition solu-
tions without any user preferences.

(b) Coloring NSGA-II output using fuzzy Logic based on
9 user preference rules.

(c) Coloring NSGA-II output using fuzzy Logic based on
18 user preference rules.

(d) Coloring NSGA-II output using fuzzy Logic based on
27 user preference rules.

Fig. 8: Appliance composition optimization results.

IEEE TRANSACTIONS ON CLOUD COMPUTING 13

for service composition [12] our approach improves
the composition solution diversity and convergence
and decreases the execution time.

Unified Cloud Interface (UCI) provides ontology4

model for modeling Amazon EC2 services. Mosaic
project [27] is proposed to develop multi-Cloud ori-
ented applications. In Mosaic, Cloud ontology plays
and essential role, and expresses the application’s
needs for Cloud resources in terms of SLAs and QoS
requirements. It is utilized to offer a common access to
Cloud services in Cloud federations. However, none
of these ontologies focus on modeling of compatibility
of Cloud services.

There are several existing approaches [28], [29], [30],
[31] that are capable of dealing with incompatible
services. However, many of them only focused on
compatibility of Input and Output (I/O) of services
and did not consider incompatibilities that are caused
by regulations and other factors that are not related
to service functionalities.

In addition, OPTIMIS [32] main contribution is
optimizing the whole service life cycle, from service
construction, deployment, to operation in Cloud envi-
ronments. The considered QoS criteria in OPTIMIS are
trust, risk, eco-efficiency and cost. The evaluation of
Cloud provider is accomplished through an adoption
of Analytical Hierarchy Process (AHP). In comparison
with our approach for appliance composition, works
that applied Analytical Hierarchy Process (AHP) and
Multi-Attribute Utility Theory (MAUT) [33], can only
perform well when the number of given alternatives
is small and the number of objectives is limited. In
contrast, our approach can deal efficiently with a large
number of Cloud services in the repository.

While there are other studies [34], [35], [36], [41]
that focus on appliance selection and deployment
problem, we are not aware of any work that provides
a framework for composing and deploying multiple
virtual appliances with the focus on automatic com-
patibility checking and QoS-aware ranking.

7 CONCLUSIONS AND FUTURE DIRECTIONS

In order to tackle Cloud service composition chal-
lenges, we presented an ontology-based approach to
describe services and their QoS properties, which
helped us to build a composition with a set of com-
patible services. Our system helps non-expert users
with limited or no knowledge on legal and image
format compatibility issues to deploy their services
faultlessly. In addition, we proposed a technique to
optimize the service composition based on user pref-
erences such as deployment time, cost, and reliability.
The approach exploits the benefits of evolutionary
algorithms such as OMOPSO, NSGA-II, and SPEA-
II for optimization and fuzzy logic to handle vague

4. OWL Ontology provided by OCI https://code.google.com/p/
unifiedcloud/source/browse/trunk/ontologies/

preferences of users. Results show that for the pro-
posed case study, we can effectively help an unskilled
user to identify the appliance compositions which are
closest to their preferences.

Integer Linear Programming (ILP) [37], Pseudo-
Boolean Optimisation (PBO) [38], and Multiple Ob-
jective Ant Colony Optimization (MOACO) [39] are
all competitive algorithms, and with the best of our
knowledge, for this particular problem, there is no in-
depth comparison between all three and OMOPSO.
Therefore, providing such a comparison can be con-
sidered as another possible future work.

Moreover, Cloud services have specific characteris-
tics and QoS dimensions which have to be identified.
Specifically, defining criteria which are able to model
energy and carbon emission efficiency, reliability, and
trust of a Cloud service are increasingly attractive
to users. For example, methods to evaluate reliabil-
ity and trust of providers from user feedbacks and
monitoring services together can be further studied.
This consists of collecting required raw data from
trusted sources and statistically analyzing and aggre-
gating them. In addition, user experience is another
important benchmark for Cloud service providers. Re-
cently, crowdsourcing is being used to create collective
knowledge to assess QoS. It requires an investigation
on discovering the crowd that can evaluate a service
efficiently, delegating evaluation tasks to crowds, and
calculating the accuracy of the assessments.

The current implementation of the translator com-
ponent supports XML-based Cloud services. Emerg-
ing specifications such as Open Cloud Computing
Interface (OCCI) [40] aims at providing a standard
way for describing Cloud resources. Therefore, inves-
tigating approaches that can semantically enrich these
new formalisms can be taken as a future direction to
further enhance the translator component.

ACKNOWLEDGMENTS

We thank Yoganathan Sivaram, Adel Nadjaran Toosi
and Rodrigo N. Calheiros for their constructive sug-
gestions on this article.

REFERENCES
[1] C. Sun, L. He, Q. Wang, and R. Willenborg, “Simplifying

service deployment with virtual appliances,” in Proceedings of
the IEEE International Conference on Services Computing (SCC),
2008.

[2] J. De Bruijn, H. Lausen, A. Polleres, and D. Fensel, “The web
service modeling language wsml: An overview,” in Proceedings
of the 3rd European conference on The Semantic Web: research and
applications, 2006.

[3] A. Dastjerdi, S. Tabatabaei, and R. Buyya, “An effective archi-
tecture for automated appliance management system applying
ontology-based cloud discovery,” in Proceedings of the 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, 2010.

[4] A. Dastjerdi and R. Buyya, “An autonomous reliability-aware
negotiation strategy for cloud computing environments,” in
Proceedings of 12th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing. IEEE, 2012.

IEEE TRANSACTIONS ON CLOUD COMPUTING 14

[5] DMTF, “Open virtualization format,” http://www.dmtf.org/
standards/ovf.

[6] A. Dastjerdi, S. Tabatabaei, and R. Buyya, “A dependency-
aware ontology-based approach for deploying service level
agreement monitoring services in cloud,” Software: Practice and
Experience, vol. 42, no. 4, pp. 501–518, 2011.

[7] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and
grid computing 360-degree compared,” in Proceedings of the
Grid Computing Environments Workshop (GCE), 2008.

[8] J. Kopeckỳ, D. Roman, T. Vitvar, M. Moran, and A. Mocan,
“Wsmo grounding. wsmo working draft v0. 1, 2007.”

[9] D. Lambert, N. Benn, and J. Domingue, “Integrating heteroge-
neous web service styles with flexible semantic web services
groundings,” in Proceedings of the 1st International Future En-
terprise Systems Workshop, 2010.

[10] R. Barth and C. Smith, “International regulation of encryption:
technology will drive policy,” Borders in Cyberspace: Information
Policy and Global Information Infrastructure, pp. 283–299, 1999.

[11] A. Jsang and R. Ismail, “The beta reputation system,” in
Proceedings of the 15th Bled Electronic Commerce Conference, 2002.

[12] Y. Yao and H. Chen, “Qos-aware service composition using
nsga-ii1,” in Proceedings of the 2nd International Conference on
Interaction Sciences: Information Technology, Culture and Human,
ser. ICIS ’09. New York, NY, USA: ACM, 2009.

[13] J. Durillo and A. Nebro, “jmetal: A java framework for
multi-objective optimization,” Advances in Engineering Soft-
ware, vol. 42, no. 10, pp. 760–771, 2011.

[14] J. Branke and K. Deb, “Integrating user preferences into evolu-
tionary multi-objective optimization,” Knowledge Incorporation
in Evolutionary Computation, pp. 461–477, 2005.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: Nsga-ii,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–
197, 2002.

[16] E. Zitzler and L. Thiele, “Multiobjective evolutionary algo-
rithms: A comparative case study and the strength pareto ap-
proach,” IEEE Transactions on Evolutionary Computation, vol. 3,
no. 4, pp. 257–271, 1999.

[17] M. Sierra and C. Coello, “Improving pso-based multi-objective
optimization using crowding, mutation and e-dominance,” in
Proceedings of the Third International Conference on Evolutionary
Multi-Criterion Optimization, EMO 2005.

[18] E. Mamdani and S. Assilian, “An experiment in linguistic
synthesis with a fuzzy logic controller,” International Journal
of Man-Machine Studies, vol. 7, no. 1, pp. 1–13, 1975.

[19] L. Zadeh, “Fuzzy logic= computing with words,” IEEE Trans-
actions on Fuzzy Systems, vol. 4, no. 2, pp. 103–111, 1996.

[20] P. Cingolani and J. Alcala-Fdez, “jfuzzylogic: a robust and flex-
ible fuzzy-logic inference system language implementation,”
in Proceedings of International Conference on Fuzzy Systems, 2012.

[21] K. Deb, Multi-objective optimization using evolutionary algorithms.
Wiley, 2001.

[22] D. A. Van Veldhuizen, “Multiobjective evolutionary algo-
rithms: Classifications, analyses, and new innovations,” 1999.

[23] C. A. C. Coello, G. B. Lamont, and D. A. Van Veld-
huizen, Evolutionary algorithms for solving multi-objective prob-
lems. Springer, 2007, vol. 5.

[24] A. V. Konstantinou, T. Eilam, M. Kalantar, A. A. Totok,
W. Arnold, and E. Snible, “An architecture for virtual solution
composition and deployment in infrastructure clouds,” in
Proceedings of the 3rd International Workshop on Virtualization
Technologies in Distributed Computing, 2009.

[25] T. Chieu, A. Mohindra, A. Karve, and A. Segal, “Solution-
based deployment of complex application services on a
cloud,” in Proceedings of the 2010 IEEE International Conference
on Service Operations and Logistics and Informatics, 2010.

[26] P. Wang, “Qos-aware web services selection with intuitionistic
fuzzy set under consumer’s vague perception,” Expert Systems
with Applications, vol. 36, no. 3, pp. 4460–4466, 2009.

[27] B. Di Martino, D. Petcu, R. Cossu, P. Goncalves, T. Máhr, and
M. Loichate, “Building a mosaic of clouds,” in Proceedings of
Euro-Par 2010 Parallel Processing Workshops. Springer, 2011.

[28] P. Bartalos and M. Bieliková, “Automatic dynamic web service
composition: A survey and problem formalization,” Computing
and Informatics, vol. 30, no. 4, pp. 793–827, 2012.

[29] F. Rosenberg, M. Muller, P. Leitner, A. Michlmayr, A. Bouguet-
taya, and S. Dustdar, “Metaheuristic optimization of large-
scale qos-aware service compositions,” in Proceedings of IEEE
International Conference on Services Computing, 2010.

[30] F. Lecue and N. Mehandjiev, “Towards scalability of quality
driven semantic web service composition,” in Proceedings of
IEEE International Conference on Web Services. IEEE, 2009.

[31] M. Alrifai, T. Risse, P. Dolog, and W. Nejdl, “A scalable
approach for qos-based web service selection,” in Proceedings
of Service-Oriented Computing–ICSOC Workshops, 2009.

[32] M. Kiran, M. Jiang, D. Armstrong, and K. Djemame, “Towards
a service lifecycle based methodology for risk assessment in
cloud computing,” in Proceedings of Ninth International Confer-
ence on Dependable, Autonomic and Secure Computing, 2011.

[33] V. Tran, H. Tsuji, and R. Masuda, “A new QoS ontology and
its QoS-based ranking algorithm for Web services,” Simulation
Modelling Practice and Theory, vol. 17, no. 8, pp. 1378–1398,
2009.

[34] R. Bradshaw, N. Desai, T. Freeman, and K. Keahey, “A scalable
approach to deploying and managing appliances,” in Proceed-
ings of the TerraGrid Conference, 2007.

[35] A. Rodriguez, J. Carretero, B. Bergua, and F. Garcia, “Resource
selection for fast large-scale virtual appliances propagation,”
in Proceedings of the IEEE Symposium on Computers and Commu-
nications, 2009.

[36] T. Pham, H. Truong, and S. Dustdar, “Elastic high performance
applications–a composition framework,” in Proceedings of IEEE
Asia-Pacific Services Computing Conference, 2011.

[37] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “Qos-aware middleware for web services com-
position,” IEEE Transactions on Software Engineering, vol. 30,
no. 5, pp. 311–327, 2004.

[38] V. Manquinho, J. Marques-Silva, and J. Planes, “Algorithms
for weighted boolean optimization,” in Proceedings of Theory
and Applications of Satisfiability Testing-SAT. Springer, 2009.

[39] D. Angus and C. Woodward, “Multiple objective ant colony
optimisation,” Swarm intelligence, vol. 3, no. 1, pp. 69–85, 2009.

[40] T. Metsch, A. Edmonds, R. Nyrén, and A. Papaspyrou, “Open
cloud computing interface–core,” in Open Grid Forum, Available
at: http://forge. gridforum. org/sf/go/doc16161, 2010.

[41] A. Aboulnaga, K. Salem, A. Soror, U. Minhas, P. Kokosielis,
and S. Kamath, “Deploying database appliances in the cloud,”
Data Engineering, vol. 32, no. 1, p. 13, 2009.

Amir Vahid Dastjerdi is a Research Fellow
with the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory at the Uni-
versity of Melbourne. His current research
interests include Cloud service coordination,
scheduling, and resource provisioning using
optimization, machine learning, and artificial
intelligence techniques.

Rajkumar Buyya is Future Fellow of the
Australian Research Council and Director of
the Cloud Computing and Distributed Sys-
tems (CLOUDS) Laboratory at the University
of Melbourne, Australia. He is also serving
as the CEO of Manjrasoft, a spin-off com-
pany of the University, commercializing its
innovations in Cloud Computing. He has au-
thored over 450 publications and four text
books including "Mastering Cloud Comput-
ing" published by McGraw Hill and Morgan

Kaufmann, 2013 for Indian and international markets respectively.
He is one of the highly cited authors in computer science and
software engineering worldwide (h-index=78 and 28000+ citations).

