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Abstract— Cloud computing is a suitable platform for execution 
of complex computational tasks and scientific simulations that 
are described in the form of workflows. Such applications are 
managed by Workflow Management System (WfMS). Because 
existing WfMSs are not able to autonomically provision resources 
to real-time applications and schedule them while supporting 
fault tolerance and data privacy, we present a highly-scalable 
workflow-enabled analytics system that manages inter-
dependable analytics tasks adaptively with varying operational 
requirements on a common platform and enables visualization of 
multidimensional datasets of real world phenomena. In this 
paper, we present the architecture of such a WfMS and evaluate 
it in terms of performance for execution of workflows in Clouds. 
A real world application of climate-associated dengue fever 
prediction was evaluated on public, private, and hybrid Clouds 
and experienced effective speedup in all the environments. 

I.  INTRODUCTION 

Cloud computing enables a large amount of computer 
resources to be transformed into a pool of configurable virtual 
machines to provide an on-demand computing facility to users. 
It allows pay-as-you-go for billing so that users can access their 
purchased resources from anywhere at any time. It is a suitable 
platform for the execution of complex computational tasks and 
scientific simulations, which may require a spike of 
computational resources, e.g., computing nodes and storages. 
In those data intensive applications, there might be a large 
amount of input, output, and/or intermediate data with 
dependencies among each other. In order to handle complex 
data flows, a Workflow Management System (WfMS) [1] is 
required to ensure elasticity, reliability and efficiency. 

WfMSs are responsible for receiving the workflow input 
from the user, obtaining resources to execute them, scheduling 
workflow tasks for execution, managing the data transfer for 
tasks scheduled to different resources in order to meet tasks 
dependencies, and managing failures in tasks and resources 
during workflow execution. 

To further complicate management of workflows, the rapid 
growth in the size of datasets and the increasing complexity 
involved in data analytics require efficient and flexible tools to 
enable high performance data-intensive computing. If WfMSs 
are to be used to manage complex applications like in real-time 
data analytics in a dynamic Cloud infrastructure [2], the 
challenge of developing such systems increases. The problem 
of allocating the right number of machines, of the right type, 

and for the right time frame is application-dependent and is 
usually delegated to users. Moreover, the exact execution time 
of each task is usually unknown a priori, which challenges the 
system design to handle the heterogeneity and adapt to 
variation in performance in real time.  

Because existing WfMS are not able to autonomically 
provision resources to real-time applications and schedule them 
while supporting fault tolerance and data privacy, we present in 
this paper a highly-scalable workflow-enabled analytics system 
that manages inter-dependable analytics tasks adaptively with 
varying operational requirements on a common platform and 
enables visualization of multidimensional datasets of real world 
phenomena. The proposed system is able to: 

1. Allocate tasks within the workflow into appropriate 
resources and scaling up/down resources according to users’ 
requirements – dynamic resource provisioning; 

2. Optimize the performance at run time to meet various 
goals such as the shortest possible execution time, the most 
inexpensive execution cost, or the optimized throughput – 
adaptive task/workflow/users scheduling; 

3. Self-heal during resource failure or service disruption 
– fault tolerance; 

4. Protect data in the public and private Clouds as it is 
being transferred, stored, and processed – data privacy; 

5. Monitor the status information in real-time – 
application management. 

The main contributions of this paper are: (i) it introduces 
the architecture and implementation of a WfMS able to achieve 
the five goals described above and (ii) it contains an evaluation 
of the proposed WfMS in terms of performance for execution 
of workflows in Clouds. The application was executed on 
public, private, and hybrid Clouds and experienced effective 
speedup in all the environments. 

The rest of this paper is organized as follows. Section II 
describes related works and positions our approach against 
existing ones. Section III introduces our proposed system, its 
requirements and architecture, and an application scenario. 
Section IV presents a performance evaluation of our proposed 
system. Finally, Section V presents conclusion and future 
research directions. 



II. RELATED WORK 

Several scientific workflow platforms were developed in 
the last years. Popular ones are Pegasus [3], Taverna [4], and 
Triana [5]. They were developed to support Grid computing 
environments, where utilization of resources is based on 
allocation and resources are accessed via collaboration rather 
than financial incentives. Cloudbus Workflow Engine [1] was 
originally developed for Grid infrastructures, but was later 
extended to operate in Cloud environments. 

Kim et al. [6] proposed a workflow management system 
able to deploy workflows in hybrid infrastructures composed of 
TeraGrid nodes and Amazon EC2 resources. Our proposed 
system, on the other hand, can also leverage resource from 
arbitrary Grid systems, desktop Grids and Cloud providers. 

Gogouvitis et al. [7] proposed a Workflow Management 
System for deploying workflow application on virtualized 
environments that is able to utilize resources from public 
Clouds. However, it has no dynamic provisioning capabilities 
to speedup application execution and to meet real-time 
application performance requirements as does our approach. 

Fernandez et al. [8] proposed a Cloud Workflow 
Management System that applies a concept called chemical 
programming for the application scheduling. The system, 
however, does not offer dynamic resource provisioning 
capabilities and autonomic self-healing features. 

III. SYSTEM REQUIREMENTS,  ARCHITECTURE, AND 

APPLICATION SCENARIO 

Recent advances in the Cloud computing technology made 
it a potential candidate to host data intensive, scientific 
application such as workflows. Clouds add extra complexity to 
Workflow Management Systems (WfMSs) because the amount 
of resources that WfMS can provision for executing the 
workflow is virtually infinite, as long as there is budget 
available for being spent in the workflow execution process. 
Therefore, WfMSs operating in Cloud environments must be 
able not only to perform tasks such as scheduling and mapping 
of tasks to resources and data movement, but also they have to 
find an acceptable compromise between budget expenditure, 
resources utilization, and execution speedup. 

Furthermore, data privacy is an important issue when public 
Cloud infrastructures host workflow applications because the 
data analytics application may eventually be applied to 
sensitive data such as data from financial and health industries 
or from governments. Also, real-time workflows impose limits 
on the processing time of individual tasks, and therefore timely 
detection of failed tasks or resources and reaction to such 
events are paramount for meeting performance requirements of 
real-time applications. 

In summary, the requirements we identified and explored in 
our proposed WfMS system are: 

1. Capability of allocating tasks within the workflow 
into appropriate resources and scaling up/down resources 
according to users’ requirements – dynamic resource 
provisioning; 

2. Capability of optimizing the performance at run time 
to meet various goals such as the shortest possible execution 

time, the most inexpensive execution cost, or the optimized 
throughput – adaptive task/workflow/users scheduling; 

3. Capability of self-healing during resource failure or 
service disruption – fault tolerance; 

4. Capability of protecting data in the public and private 
Clouds as it is being transferred, stored and processed – 
security-conscious data migration and  data privacy; 

5. Capability of monitoring the status information in 
real-time – application management. 

As none of the existing platforms are able to support all the 
above requirements, we proposed an architecture to meet them. 
Our proposed architecture is able to (i) share workflows from 
multiple users for analytics, (ii) harness a workflow 
management and scheduling engine for adaptive resource 
allocation and optimization, (iii) remotely execute data 
analytics services and auto scale up/down based on the problem 
size and efficiency, (iv) provide big data visualization, and (v) 
support iterative optimization. 

The proposed architecture, depicted in Figure 1, was 
implemented as a system that integrates data analytics models 
and tools such as open source data visualization, GeoServer1, 
Amazon EC2 and S3 2 , Eucalyptus private Cloud [9] with 
Cloud clustering service, and Cloudbus Workflow Engine [1]. 
The top layer of the architecture acts at the application tier, 
enabling workflows to be executed by the middleware. This top 
layer performs application-specific tasks such as application 
monitoring and execution, creation of workflows, and resource 
control. 

Below the application layer, there is the middleware, which 
interacts with the hybrid Cloud infrastructure, composed of 
public private Clouds and in-house private Clouds belonging to 
the organization managing the system, to enable application 
execution. This layer includes actual scheduling and 
dispatching of workflow tasks and management of Cloud 
resources. Communication among all parts happens via events, 
which are managed by the Event Service component of the 
architecture. 

A meta-scheduler that is part of the architecture coordinates 
the execution of interdependent tasks in a highly scalable 
manner. Various adaptive workflow scheduling algorithms can 
be incorporated for multi-objective performance optimization 
[10][11][12]. The meta-scheduler enables application-
dependent information to be analyzed collaboratively and 
simultaneously on different resources and presented as multi-
layered graphics to end users. 

The Workflow Scheduler component of the middleware 
extends the Cloudbus Workflow Engine by adding adaptive 
computing methods to process complex analytic workflows. 
This was enabled with the inclusion of new functionalities to 
the workflow engine as cost-effective manual and automatic 
auto-scaling, security-conscious data migration, iterative 
optimization, and web-based interfaces for geo-data 
visualization. Fault tolerant capabilities were introduced in the 
architecture to enable monitoring of failures on both workflow 
tasks and resources and re-execution of failed processes 

                                                           
1 http://geoserver.org 
2 http://aws.amazon.com 
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Figure 1. System architecture. 

without stopping workflow execution. The Task Dispatcher 
submits workflow tasks to the resources selected by the 
scheduler for execution. 

The Cloud Resource Management layer interacts with the 
physical Cloud infrastructure and with the Application layer to 
enable features such as adaptive resource allocation and 
selection of the “best” resource allocation to meet the user time 
and cost requirements. This component interacts with 
applications because many of the information it uses to make 
decision on Cloud resource allocation is application-specific. 
Therefore, it is important that the Application Enabler 
component contains enough data about the target application 
and provides means for it to be used by lower layers willing to 
optimize Cloud resource allocation. 

Because optimal results for execution of workflows 
applications can only be achieved with a strong synergy 
between the Cloud Resource Manager and the Application 
Enabler, we discuss next how our proposed architecture 
enabled the building and deployment of a system for workflow-
enabled spatial-temporal analytics for climate-associated 
dengue fever prediction in Clouds. 

A. Application Scenario 

Our application scenario is climate-associated dengue fever 
prediction, a very relevant topic concerning public health in 
Singapore. Dengue is a mosquito-borne infection disease that 
occurs in many parts of the world especially tropical regions 
such as the Southeast Asia. It has become a major 
international public health concern. According to the World 
Health Organization (WHO), there are 2.5 billion people in the 
world living in dengue endemic places. As Singapore is one of 

the most densely populated countries in Asia, prediction and 
control of dengue is an especially important public health 
issue for the country [13]. Effective methods are needed to 
analyze the effect of climate variation on dengue disease or the 
growth of the mosquitoes in a timely manner. 

The application takes various factors such as temperature, 
population density, geographical locations, etc. into 
consideration, and predicts the distribution patterns of dengue 
occurrences by analyzing the associations among those factors.  

Our Workflow-Enabled Scalable Spatial-Temporal 
Analytic system processes data about dengue fever cases 
provided by the Communicable Diseases Division, Ministry of 
Health (MOH) Singapore. Such data is composed of historical 
incident data from 1960s to 2011 traced by day, week, and 
month. This data is combined with Climate variable data 
obtained from the Singapore Changi Meteorological Station 
and National Climatic Data Center (NCDC), which is 
composed of Terabytes of climate-associated data, comprising 
300,000 spatial data points multiplied by 365,250 temporal 
intervals. A simple workflow for this analytics is depicted in 
Figure 2. 

A 1-day dataset requires 30 minutes to be processed, 
considering the time taken from the initial data extraction to 
final visualization in a machine with an Intel dual core 
2.93GHz CPU and 4GB of memory. In order to reduce such a 
processing time and enable real-time spatial and temporal 
analysis with shorter turnaround time, the system must be able 
to dynamically allocate Cloud resources. Furthermore, such an 
allocation must be optimized in order to minimize budget 
expenditure with public Cloud resources. 
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Figure 3. Security-conscious data transfer mechanism in use. (a) 
Definition of security level of workflow tasks (b) Resource mapping. 

 
Figure 2. Workflow of Spatial-temporal dengue fever analysis. 

In order to achieve the requirements discussed previously in 
the context of such an application, we developed a system for 
workflow-enabled scalable spatial-temporal analysis. The 
performance requirements are achieved by partitioning of the 
data processing into different parallel tracks and execution of 
such tracks on multiple virtual machines simultaneously. To 
achieve that, the system optimizes the performance iteratively 
and finds the best suitable solutions for performance 
optimization. The adaptive workflow engine design allows the 
system to select the best suitable resources according to the 
user requirements (e.g., update frequency, cost, etc), schedule 
the privacy-sensitive data in private resources, and tolerate 
faults when failure happens. Users can define the privacy 
policy of the data access, and resources are allocated with 
awareness of the security level.  

Security and Privacy: The system requires security-
conscious data migration which allows users to specify the 
security level of each workflow task so that the system will 
schedule data processing and migration onto highly secured 
resources to retain data privacy. 

Figure 3 shows the security-conscious data migration 
mechanism in use. In Figure 3(a), users specify the security 
level of tasks in a workflow, for example high or low. Once 
specified, the workflow engine will allocate the task to those 
resources which can meet the security requirements, as 
depicted in Figure 3(b). For example, the task with high 
security requirement will only be allocated to resources in 
private clouds, while those with low security requirements can 
be allocated to public resources. In this method, the system is 
able to constraint the data required by a high secured tasks to 
be migrated to the resources which have relatively low security.   

Cost-effective auto-scaling: We consider that resources are 
allocated to workflow tasks based on a budget constraint, and 
the system schedules tasks to resources that can optimize the 
performance in terms of the makespan while satisfying budget 
requirements. Our previous work [10] [12] [14] on budget 
constraint scheduling and multi-objective optimization 
discussed the tradeoff issues of the performance and cost under  
budget constraints.  

The above features of our proposed system enable high 
scalable, secure, and cost-effective execution of workflows for 
spatial temporal analysis on Clouds, as demonstrated in the 
experiments presented in the next section. 

IV. PERFORMANCE EVALUATION 

We conducted extensive experimental tests to examine the 
performance of our proposed system in terms of processing 
time, speedup, and scalable efficiency in private, public, and 
hybrid Clouds. 

The experimental testbed is composed of a private Cloud 
and a public Cloud that hosted our system individually and 
together, in the form of a hybrid Cloud. 

The private Cloud is composed of 4 nodes, each of which 
has 24 cores (hyper-threaded) 2.93 GHz processor and 96 GB 
of memory. On top of this infrastructure, we deployed 48 
virtual machines. Each virtual machine (VM) is a Linux 
CentOS 5.8 with 2 or 4 cores and 4 GB of memory. 

The public Cloud is composed of 25 Amazon EC2 large 
instance (2 cores with 4 ECU and 7.5 GB of memory) 
machines deployed in the region of Asia Pacific (South East). 

We repeated the workflow execution with different number 
of cores, from 1 to the maximum number of cores available in 
the specific Cloud, in order to analyze the system’s scalability. 

The metrics we used to evaluate our system are speedup 
and efficiency. We define the speedup, S=T1/Tn, as the ratio 
between processing time on 1 CPU core and the processing 
time on n CPU cores and the efficiency, E=S/n, as the speedup 
over the number of CPU cores. 
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Figure 4.  Execution time for different Cloud scenarios. (a) Private 
Cloud (b) Public Cloud (c) Hybrid Cloud. 
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Figure 5. Speedup for different Clous scenarios. (a) Private Cloud (b) 
Public Cloud (c) Hybrid Cloud. 

Figures 4-6 show respectively the execution time, speedup, 
and efficiency of the data analytics application running on 
each of the three environments. For the public and private 
Cloud results, the number of cores is presented in x-axis, and 
the metric is presented in the y-axis. For the hybrid Cloud 
experiment, separate axis for CPU cores from public and 
private Clouds are used. Colors in the planes group 
combinations of public and private Clouds with similar 
performance for the measured metric. 

Results show that for the three environments, the 
application presents a region where a high speedup is 
achieved, followed by a region of smaller speedup. For the 

private Cloud, speedup is more significant for up to 5 cores, 
against around 20 cores from the public Cloud. We observe 
that a trend of sub-linear speedup is verified for up to 100 
cores in the public Cloud, with efficiency above 30% even in 
the case of this high scale. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a highly-scalable workflow-

enabled analytics system that manages inter-dependable 
analytics tasks adaptively with varying operational 
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Figure 6. Efficiency for different Cloud scenarios. (a) Private Cloud (b) 
Public Cloud (c) Hybrid Cloud. 

requirements on a common platform and enables visualization 
of multidimensional datasets of real world phenomena.  

Our proposed system fills the gaps of existing similar 
systems to allow collaborative workflow analytics in Clouds in 
which workflows can be contributed by different users, and 
extends the capability of current spatial-temporal analytics 
tools to enable complex analytics workflows. It can handle 
large volume of multidimensional data sets and allows 
parallelizing the analytics by partitioning the geo-data into 
multiple trunks and visualizing multi-layered information in a 
map-like display. A real world application of climate-
associated dengue fever prediction was chosen as a use case to 
demonstrate the capability of such a system in assisting 

analysts for real-time spatial-temporal analysis. Executed on 
public, private, and hybrid Clouds, the application experienced 
effective speedup in all of the environments. 

One improvement to the system we plan to investigate is 
allowing the evolution of the analytics workflows and 
optimizing the workflows by selecting/replacing certain 
portions of the workflows on the fly. Other future work 
includes improving the partitioning of multidimensional data 
for parallel analytics, in order to enable tasks to split or merge 
to improve the workflow scalability and efficiency.  
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