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Abstract— Cloud computing has been considered as a solution 
for solving enterprise application distribution and 
configuration challenges in the traditional software sales 
model. Migrating from traditional software to Cloud enables 
on-going revenue for software providers. However, in order to 
deliver hosted services to customers, SaaS companies have to 
either maintain their own hardware or rent it from 
infrastructure providers. This requirement means that SaaS 
providers will incur extra costs. In order to minimize the cost 
of resources, it is also important to satisfy a minimum service 
level to customers. Therefore, this paper proposes resource 
allocation algorithms for SaaS providers who want to minimize 
infrastructure cost and SLA violations. Our proposed 
algorithms are designed in a way to ensure that Saas providers 
are able to manage the dynamic change of customers, mapping 
customer requests to infrastructure level parameters and 
handling heterogeneity of Virtual Machines. We take into 
account the customers’ Quality of Service parameters such as 
response time, and infrastructure level parameters such as 
service initiation time. This paper also presents an extensive 
evaluation study to analyze and demonstrate that our proposed 
algorithms minimize the SaaS provider’s cost and the number 
of SLA violations in a dynamic resource sharing Cloud 
environment. 

Keywords- Cloud computing; Service Level Agreement 
(SLA); Resource Allocation; Scheduling; Software as a Service. 

I. INTRODUCTION  
Traditionally the shrink-wrapped software sales model 

dominated the market. This model requires customers are 
required to purchase per petual or subscription-based license 
and manage the deployment themselves, including 
transitioning between different versions. Hence, customers 
need technical expertise and high initial investment for 
buying software. They also need to pay for upgrades as 
annual maintenance fee. With the emergence of Software as 
a Service (SaaS), applications are moving away from PC-
based or ownership-based programs to web delivered hosted 
services [19].  The software services are provisioned on a 
pay-as-you-go basis to overcome the limitation of the 
traditional software sales model.  Using the SaaS model, 
providers gain steady, on-going revenue from their 
customers. In exchange for the on-going charges, the 
customers get the benefit of continuously maintained 
software. Hence, there is no additional license fee for new 
versions and the complexity of transitioning to new releases 
is managed by SaaS providers. Due to the SaaS model’s 

flexibility, scalability and cost-effectiveness, it has been 
increasingly adopted for distributing many enterprise 
software systems, such as banking, e-commerce business 
software [7][9]. SaaS providers such as Computer Associates 
(CA) [16] derive their profits from the margin between the 
operational cost of infrastructure and the revenue generated 
from customers.  Therefore, SaaS providers are looking into 
solutions that minimize the overall infrastructure cost 
without adversely affecting the customers. Hence, the focus 
of this paper is on exploring policies to minimize the 
required infrastructure to meet customer demand in the 
context of SaaS providers offering hosted software services. 
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A SaaS model for serving customers in Cloud is shown 

in Fig. 1. A customer sends requests for utilizing enterprise 
software services offered by a SaaS provider, who uses three 
layers, namely application layer, platform layer and 
infrastructure layer, to satisfy the customer’s request. The 
application layer manages all application services that are 
offered to customers by the SaaS provider. The platform 
layer includes mapping and scheduling policies for 
translating the customer’s Quality of Service (QoS) 
requirements to infrastructure level parameters and allocating 
Virtual Machines (VMs) to serve their requests. The 
infrastructure layer controls the actual initiation and removal 
of VMs. The VMs can be leased from IaaS providers such as 
Amazon EC2 or private virtualized clusters owned by the 
SaaS provider. In both cases, the minimization of the number 
of VMs will deliver savings. The savings are greater when 
SaaS providers use the third party IaaS providers since no 
capital expenditure is required.  

Figure 1.  A system model of a SaaS layer structure 
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Currently, SaaS providers such as Compiere ERP provide 
an individual VM for each customer [17] to maintain service 
level requirements in terms of response time and capacity. 
However, this causes wastage of hardware resources which 
results in high infrastructure cost since customers may not 
use complete VM capacity which is reserved to serve their 
requests. A multi-tenancy approach can reduce the needed 
infrastructure, but care must be taken in providing access to 
resources so that Service Level Agreements (SLAs) are not 
violated.  

The current works in Cloud computing [13][10][2] are 
focused mostly on maximizing the profit of IaaS providers, 
but works related to the SaaS provider considering SLAs are 
still in their infancy. Many works do not consider the 
customer driven management, where resources have to be 
dynamically rearranged based on customers’ demands. Thus, 
in this paper, we examine the resource allocation strategies, 
which allow a cost effective usage of resources in Clouds to 
satisfy dynamically changing customer demands in line with 
SLAs.  

Therefore, in order to achieve the SaaS provider’s 
objective to maximize profit and customer satisfaction levels, 
our work proposes cost effective mapping and scheduling 
policies which minimize cost by optimizing the resource 
allocation within a VM. These policies also take into account 
QoS parameters, and infrastructure heterogeneity regarding 
multiple types of VMs and various service initiation times. 
To satisfy customer’s request in order to enlarge market 
share and minimize cost, the following questions have to be 
addressed: 

• How to manage the dynamic change of customer 
requests? (such as upgrade from Professional to 
Enterprise product, add more user accounts for the 
same product) 

• How to map customer requirements to infrastructure 
level parameters? 

• How to deal with the infrastructure level 
heterogeneity? 
 

The key contributions of this paper are as follows: 
• It defines SLA with customers based on QoS 

parameters. 
• It describes the mapping strategy by interpreting 

customer request requirements to infrastructure level 
parameters. 

• It designs and implements scheduling mechanisms to 
maximize an SaaS provider’s profit by reducing the 
infrastructure cost and minimizing SLA violations. 
The scheduling mechanism determines where and 
which type of VM has to be initiated by 
incorporating the heterogeneity of VMs in terms of 
their price, dynamic service initiation time, and data 
transfer time. In addition, it manages to reduce 
incurred penalties for handling dynamic service 
demands when customers are sharing resources. 

This paper also presents a performance analysis of the 
proposed algorithms based on the customer’s perspective: (i) 
arrival rate, (ii) proportion of upgrade requests; from SaaS 

providers’ perspective: (i) service initiation time, (ii) penalty 
rate. The experimental results show that the proposed 
algorithms provide better solutions in terms of total profit 
and number of VMs when compared with base algorithm in 
most of the scenarios. 

The rest of the paper is organized as follows. In Section 
II, we discuss prior works related to SLA-based and profit 
driven resource allocation in Cloud computing contexts. We 
also identify how our work differs from related works. 
Section III presents the detailed scenario and outlines the 
SLA supporting QoS parameters. Section IV describes a 
reference and two proposed algorithms, which are 
ProfminVio, ProfminVmMaxAvaiSpace and 
ProfminVmMinAvaiSpace. Section V firstly presents the 
experimental methodology including test bed and evaluation 
metrics; secondly, discusses the overall comparison of the 
performance evaluation results; thirdly, compares the 
algorithms by providing insights on when each algorithm 
should be used. Finally, Section VI concludes the paper by 
summarizing the comparison results and future work 
proposals. 

II. RELATED WORK 
Research on market driven resource allocation was 

started in early 80s [8][5]. Most of the market-based resource 
allocation methods are either non-pricing-based [10] or 
designed for fixed number of resources, such as FirstPrice 
[3] and FirstProfit [6]. Our work is related to user driven 
SLA-based profit maximization resource allocation for SaaS 
providers. 

Reig G. et al [11] contributed on minimizing the resource 
consumption for serving requests and executing them before 
its deadline with a prediction system. Their prediction 
system enables the scheduling policies to discard the service 
of a request if the available resource capability is not able to 
complete the request before its deadline. However, in our 
work, we consider the enterprise applications which are 
different from compute and scientific applications. 

Fu Y. et al [21] proposed an SLA-based dynamic 
scheduling algorithm (Squeeze) of distributed resources for 
streaming. Moreover, Yarmolenko V. et al [22] evaluated 
various SLA-based scheduling heuristics on parallel 
computing resources using resource (number of CPU nodes) 
utilization and income as evaluation metrics. Nevertheless, 
our work focuses on scheduling enterprise applications on 
VMs in Cloud computing environments. (The minimum unit 
of resources in our work is the number of VMs).  

Popovici et al. [6] mainly considered QoS parameters on 
the resource provider’s side such as price and offered load, 
but did not focus on the user side. However, our proposed 
work differs on QoS parameters from both the customer’s 
and the SaaS provider’s point of view and focuses on user 
driven scenarios.  

Lee et al. [2] investigated the profit driven service request 
scheduling for workflow. In contrast, our work a) focuses on 
SLA driven QoS parameters on both user and provider sides, 
and b) solves the challenge of dynamic changing customer 
requests to gain profit and improve reputation.  
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In the context of the resource allocation algorithms for 
enterprise applications, Song et al. [18] presented the genetic 
algorithms in virtualized environments. However, the genetic 
algorithms generally require a long execution time. The long 
execution time increases the probability of SLA violation in 
the Cloud computing environments, where customers need to 
be served immediately.  

In summary, this paper is unique in the following 
aspects: 

• It manages the customer satisfaction level based on 
customer QoS requirements in minimizing the SLA 
violation and cost to increase the revenue, which is 
absent from most previous works in Cloud 
computing environments. 

• The utility function is time-varying by considering 
dynamic VM deployment time (aka initiation time). 

• It adapts to dynamic resource pools and consistently 
evaluates the cost of adding a new instance or 
removing instances, while most previous work deal 
with fixed size of the resource pools. 

III. SYSTEM MODEL 
We consider the customers’ requests for the enterprise 
software services from a SaaS provider by agreeing to the 
pre-defined SLA clauses and submitting their QoS 
parameters. Customers can dynamically change their 
requirements and usage of the hosted software services. The 
SaaS provider can use their own infrastructure or outsourced 
resources from public IaaS providers. For instance, 
“Saleforce.com” provides CRM software as a service using its 
own infrastructure, and “Force.com” offers this software using 
third party infrastructure [15]. The SaaS provider’s objective 
is to schedule a request such that its profit is maximized 
while the customers’ (QoS) requirements are assured. The 
platform layer of a SaaS provider uses mapping and 
scheduling mechanisms to interpret and analyze the 
customers’ QoS parameters, and allocates respectively.  

In this section, we explain the detailed system model 
from both the customers’ and the SaaS providers’ 
perspective and also describe the related mathematical 
models. 

A. Actors 
The actors involved in our system model are described 

below along with their objectives, activities and constraints. 
1) SaaS Providers 

SaaS providers lease enterprise software as hosted 
services to customers. They are interested in maximizing 
profit and ensuring QoS for customers to enhance their 
reputation in the marketplace. In our context, an example of 
the business process between a SaaS provider and a customer 
is where a service provider (SaaS X) offers CRM or ERP 
software packages, which are offered as three types of 
products (for example, Standards, Professional and 
Enterprise) and accounts (for example, Group, Team and 
Department). When a customer (Company X) submits its first 
time rent request with product type (Standards), account type 
(Group), and the required number of accounts (m), the 

provider will allocate resources to serve this customer. At 
anytime, Company X may require an upgrade in the service 
by adding more accounts or software editions. Customers 
can request an upgrade of services dynamically at any time 
in practice. Thus a SaaS provider has to handle these 
requests intelligently in line with the requirements as set out 
in the SLA.  

From a SaaS provider’s point of view, there is a legal 
contract-SLA with any customer and if any party violates 
SLA terms, the defaulter has to pay for the penalty according 
to the clauses defined in the SLA.  The SLA properties 
include SaaS provider pre-defined parameters and the 
customer specified QoS parameters. 

The properties defined in the SLA are as follows: 
• Request Type (reqType): It defines the customer 

request type, which is ‘fist time rent’ or ‘upgrade 
service’. ‘First time rent’ means the customer is the 
customer who is renting  a new service from this 
SaaS provider. ‘Upgrade service’ includes two types 
of upgrade, which are ‘add account’ and ‘upgrade 
product’. 

• Product Type (proType): The software product 
offered to customers. For example, SaaS X offers 
Standard, Professional, and Enterprise product. The 
Standard product includes Order and Sales 
functions. The Professional contains all functions of 
Standard plus Accounting function. The Enterprise 
includes all features of Professional plus Report 
functions. 

• Account Type (accType): It constrains the 
maximum number of accounts a customer can 
create. For example, SaaS X offers three types of 
account: Group, Team, and Department, which 
allows each customer to create up to m, 2m and 5m 
number of accounts respectively. 

• Contract Length (conLen): How long the software 
service is legally available for a customer to use 
(minimum is one month). 

• Number of Accounts (accNum): The actual number 
of accounts that a customer wants to create. (Must be 
≤  the maximum number of accounts for particular 
account type). For example, a customer Company X 
wants to rent Standard software and Group account 
type, then it can request [1, m] number of accounts. 

• Number of Records (recNum): The maximum 
number of records a customer is able to create for 
each account during the transaction and this will 
impact the data transfer time during the service 
upgrade. (The value of this parameter is predefined 
in SLA). 

• Response Time (respTime): It represents the 
elapsed time between the end of a demand on a 
software service and the beginning of a service. 
Violation occurs when actual elapsed time takes 
longer than pre-defined response time in SLA. We 
consider three types of response time: (i) response 
time for the first time renting of the service  -
respTime(ftr), (ii) response time for adding new 
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accounts - respTime(upSev,addAcc) and (iii) 
response time for upgrading the product - 
respTime(upSev,upPro). (The value of each type of 
response time is different and predefined in SLA). 

The platform layer (Fig. 1) of a SaaS provider uses VM 
images to create instances according to the mapping 
decision. Therefore, it is important to identify the following 
properties for the resource allocation mechanisms to assure 
the SLA is adequately drafted: 

• VM types (l): How many types of VM can be used 
and what are they? For example, there are three 
types of VM, which are large, medium and small. 
The capacity of large VM equals to two medium 
VMs or four small VMs. 

• Service Initiation Time (iniTimeSev): How long it 
takes to initiate a VM, which is deployed with a type 
of software product. 

• VM Price (PriVM): How much it costs to a SaaS 
provider for using a VM to serve the customer 
request per time unit? It includes the physical 
equipment, power, network and administration price. 

• Data Transfer Time (dataTrafT): How long does it 
take to transfer a Gigabyte data from one VM to 
another?  

• Data Transfer Speed (dataTrafSpeed): It depends 
on the location distance and the network 
performance. 
 

2) Customers 
When a customer agrees with pre-defined SLA properties 

(such as response time), a request for an enterprise 
application is sent to the SaaS provider’s application layer 
with the customer’s QoS requirements (including request 
type, product type, account type, contract length, and 
number of accounts). 

B. Mapping Strategy: Mapping of customer QoS 
requirements to resources 
The way of interpreting customer requirements to 

infrastructure level parameters depends on the resource 
capability. In our work, the infrastructure layer focuses on 
the VM level but not the host level. To be practical, we use 
the same record model as ‘Saleforce.com’ to restrict each 
account so as to create the maximum N number of records. 
An example of the mapping strategy between VM type, 
service product type, and the maximum and minimum 
number of accounts for each account type is described in 
Table I. 

TABLE I.  THE SUMMARY OF MAPPING BETWEEN RQUESTS 
AND RESOURCES 

VM 
Type 

Product 
Type 

Account 
Type 

Max 
Account # 

Min 
Account # 

Small Standard Group m 1 

Medium Standard, 
Professional 

Team. 2m m+1 

Large Standard 
Professional, 
Enterprise, 

Department 5m 2m+1 

C. Mathematical Models 
1) Profit Model 

Let C be the number of customer requests and c indicates 
customer request id. Let at a given time instance t, a 
customer c submits a service request to the SaaS Provider. 
The customer specifies a product type, account type, contract 
length (conLen), number of accounts after agreeing with the 
pre-defined SLA clauses (response time). After the 
agreement, based on the SLA, the SaaS provider will reserve 
the requested software services which are translated at the 
infrastructure level as VM capacity. 

Let I be the number of initiated VMs, and i indicates the 
VM id. Let L indicate the types of VMs, where for a 
particular VMi with type l (VMil) has PriVMil price. Let 
iniTimeSevil  be the time taken for initiating service using 
VMil. 

Let PriServc be the SaaS provider’s final charge from 
customer c per month, which is subject on the product type, 
and account type. Let P indicates all product types. Let 
Costil

c be the cost incurred to the SaaS provider by serving 
the customer c with VMil. The Profilc indicates the profit for 
serving customer request c using VMil . Then, the total profit 

∑
=

C

c

c
ilof

1
Pr gained by the SaaS provider for serving total C 

number of customer requests is defined in Eq.(1)  

∑∑∑∑
====

−×=
C

c

c
il

C

c

C

c

c
C

c

c
il CostconLeniServof

1111
PrPr        

where, CcLlIi ∈∈∈∀ ,,          (1) 
For a customer request c, the final service price PriServc 

is subjected to the product type and account type.  Let Costil c 
indicate the cost for serving request c with VMil and it 
depends on the VM cost (VMCostilc) and penalty cost 
(PenalytCostil

c
.). 

c
il

c
il

c
il tPenaltyCosVMCostCost +=  

where, CcLlIi ∈∈∈∀ ,,          (2) 
The VM cost depends on the VM type l, the price of VM 

i with type l (PriVMil), the service initiation Time 
(iniTimeSevil) and service length (or contract length conLen) 
of customer request c. Eq. (3) defines the VM Cost. 

( )cc
ilil

c
il

conLeniniTimeSeviVMVMCost ××= Pr   

  where, CcLlIi ∈∈∈∀ ,,          (3) 
The SLA violation penalty (Penalty) model is similar to 

other related works [1][3][4] and is modeled as a Linear 
function. In Eq. (4), β is the penalty rate and DT is delay 
time.                                

DTPenalty ×+= βα          (4) 
The penalty function penalizes the service provider by 

reducing the utility (profit). According to the penalty model,  
 
 
 

)()( reqTypedelayTimereqTypetPenaltyCos c
il

c
il ×+= βα    

  where CcLlIi ∈∈∈∀ ,,         (5) 
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The penalty cost depends on the penalty delay time 
delayTimeil

c, penalty rate (β) and a constant number (α). The 
delay time and rate are subjected to the request type.   
The delay time is the time variation between the response 
time specified in SLA and the actual time taken for 
customers to wait for the service response.  

TABLE II.  THE SUMMARY OF PENALTY DELAY TIME ACCORDING TO 
REQUEST TYPES 

Table Head 

First 
Time 
Rent 

 

Upgrade Service 

Add account Upgrade product 

SLA pre-
defined 
response time 

respTime
(ftr) 

respTime(upSev, 
addAcc) 

respTime(upSev, 
upPro) 

Actual Time 

Service 
initiation 
time(iniT
imeSev) 

Service initiation 
time 
(iniTimeSev) 
Data transfer 
time(dataTrafT) 

Service initiation 
time(iniTimeSev) 
Data transfer 
time(dataTrafT) 

 
 

=c
ildelayTime  

 
 
 
There are three situations in which penalty delay can 

occur (Table II). If the request type is ‘first time rent’, the 
delay (violation) can occur due to long service initiation 
time. If the request type is ‘upgrade service’, the delay may 
be caused in adding accounts which may lead to service 
initiation time and data transfer time (if there is available 
initiated VMs), or caused by upgrade service product type 
which depends on service initiation and data transfer time for 
the total number of records created by previous request c’ 
from the same company. 

The service initiation time varies subjected to the 
physical machine’s capability. The total data transfer time 
depends on the records data created by previous request c’ 
of the same company. More specific, number of account 
created by previous request c’- ( 'caccNum ), number of 
records created per account ( 'crecNum ), the total record 

size ( ∑
=

N

n
crecSize

1
' ) (GB) and data transfer time per GB 

( dataTranfT ). N indicates the total number of records and n 
is the record id. 

dataTrafTrecSizerecNumaccNumdataTrafT
N

n
cccN

n
×∑××=∑

== 1
'''

1

 where CcNn ∈∈∀ ',             (8) 

IV. ALOGORITHM 
The main objective of our work is to maximize the profit 

for a SaaS provider by minimizing the cost of VMs using 
effective platform layer resource allocation strategies. As 
noted earlier, the current SaaS providers such as Compiere 

ERP provide an individual VM for each customer [17] to 
maintain service level requirements in terms of response time 
and capacity. We implemented this scenario as a base 
algorithm by initiating a new VM for each individual 
company in order to minimize the SLA violation 
(ProfminVio). To optimize the profit further, we propose two 
SLA-based profit maximization algorithms. 

A. Base Algorithm: Maximizing the profit by minimizing 
the number of  SLA violations (ProfminVio) 
A SaaS provider can minimize SLA violations by serving 

each individual company with a new VM involving the two 
main request types: a) first time rent and b) upgrade service. 
The algorithm first checks the request type, if the request 
type is ‘first time rent’ service then it finds the most suitable 
VM type l by using mapping strategy described in Table I, 
and afterwards calculates and records the profit for initiating 
a new VM using Eq. (1) and (2). Otherwise if the request 
type is ‘upgrade’, then check which type of upgrade is 
requesting. If upgrade type is ‘add account’, then the 
company’s permissions are updated by allowing access to 
more users on VMi which is serving this company. If the 
upgrade type is ‘upgrade product’, then first it finds the most 
suitable VM type l (Table I) and assigns request c to it, then 
calculates and record the profits.  

This algorithm reduces the number of violations by using 
a new VM for each company to guarantee the response time. 
However, it is costly because a large number of VMs are 
initiated. 

B. Proposed Algorithms 
We propose the following two algorithms: 
• Maximizing the profit by minimizing the cost by 

reusing VMs, which have maximum available space 
(ProfminVmMaxAvaiSpace). 

• Maximizing the profit by minimizing the cost by 
reusing VMs, which have minimum available space 
(ProfminVmMinAvaiSpace). 

1) Algorithm 1: ProfminVmMaxAvaiSpace 
A SaaS provider can maximize the profit by minimizing 

the resource cost, which depends on the number and type of 
initiated VMs. Therefore, this algorithm is designed to 
minimize the number of VMs by utilizing already initiated 
VMs. Algorithm 1 describes the ProfminVmMaxAvaiSpace 
algorithm, which involves two main request types: a) first 
time rent and b) upgrade service. Let the request of a 
customer c includes request type (reqType), product type 
(proType), account type (accType), number of accounts 
(accNum). The algorithm checks the request type, if the 
request type is ‘first time rent’ then it finds the VMi with 
type l (VMil) that matches to the service request parameters 
using mapping table similar to Table I. Then, it checks 
whether there is already initiated VMil and deployed with 
same type of product as customer c requested. If there is an 
initiated VMil where product proType has been deployed as 
customer c requested, then the algorithm checks whether this 

  )( ftrrespTimeiniTimeSev −  
where, reqType is first time rent              (6)    

)(
1

upSevrespTime
N

n
dataTrafTiniTimeSev −∑

=
+

where, reqType is upgrade service          (7)  
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VMil has enough space to place the request of customer c 
according to his/her requested number of accounts (accNum)  
and the available space on this VM. If there are more than 
one VMil with enough available space to place the request c, 
then the request c is assigned to the machine with maximum 
available space (Worst-fit manner) as illustrated in Fig. 2. 
(The gray space indicates unavailable space, x axis indicates 
the id of VM with same type and deployed with same type of 
product as customer c requested; y axis indicates number of 
accounts a VM can hold).  If there is no initiated VM with 
type l, then check the next type of VM - VMi(l+1) which is 
deployed with the same software product type as request c 
specified, repeat step (2 to 13) 

 
If the request type is ‘upgrade’, then the type of upgrade 

is checked. If upgrade type is ‘add account’, then it first 
checks VMi, which has placed the previous request c’ from 
the same company. If VMi is not capable to place new 
request without exceeding the number of account limitation, 
then the suitable type l of VM is found that has the 
maximum available capacity to place request c. Then move 
the previous data from VMi to new VM and release the space 
occupied by old request from VMi. On the other hand, if 
upgrade to more advanced product edition, the new request 
is placed to the suitable VM by using the MaxAvaiSpace 
Strategy (Fig. 2) and then the customer data is migrated to 
new VM and release the space occupied by old request from 
VMi. 

Algorithm 1. Pseudo-code for ProfminVmMaxAvaiSpace
Input 
Output 
Functions: 

request (c) with QoS parameters , VMi
Boolean 

First Time Rent (c){ 
1  If (there is initiated VMi with type l matches to the VM type 
requested by c) { 
2     If (VMi deployed the same product type as c required) {
3        For each initiated VMi with type l (VMil){
4           If (VMi has enough space to place  c){ 
5                put VMi into vmList 
6          }  
7        } 
8        Sort(vmList) according to the available space  
9      Schedule to process c on VMmax, which has maximum 
available space  
10     } 
11     Else { 
12        Initiate new VM with type l and deploy the product 
type as request c required 
13     } 

14  }
15 Else  While (l+j<=L)  loop { 
16     If (there is initiated VM with next type l+j, where type 
l+j matches to the VM type required by request c) { 
17        Repeat from Step 2 to 13  
18        j++ 
19       } 
20  } 
21}
Upgrade(c) {
1  If (upgrade type is ‘add account’) { 
2  get Id i and type l of VM, which processed the previous 
request from same company as c 
3     If ( VMi has enough space to place c){ 
4        Schedule to process c on VMi. 
5     } 
6     Else { 
7        Repeat step 1 to 21 of First Time Rent(c) 
8        Transfer data from old VM to new VM 
9        Release space in old VM 
10    } 
11  } 
12  If (upgrade type is ‘upgrade service’){    
13     Repeat step 7 to 9 of Upgrade(c) 
14  }
15}  

 

 
 

Figure 3. Example of disadvantage of MaxBlankSpace Strategy 
 

 
This algorithm minimizes the number of initiated VMs in 

order to optimize profit. Moreover, it minimizes number of 
violations caused by service upgrade because the request c is 
scheduled to the VM, which has the maximum available 
space. In such a way, it reduces the penalty caused by 
upgrading service. However, the disadvantage of this 
algorithm is that it can decrease the profit in some cases; 
particularly when the maximum available space is occupied 
by small number of accounts and lead to requests (required 
large number of accounts) have to be served by a new VM. 
For example, in Fig. 3, VM 6 is a new VM initiated to serve 
request c+1, because VM 1 has been occupied by Request c. 

 
Figure 4. MaxAvaiSpace Stratege 

 
Figure 2. MaxAvaiSpace Strategy 
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2) Algorithm 2 : ProfminVmMinAvaiSpace 

To overcome the disadvantages of algorithm 1, we 
reduce the space wastage by using minimum available space 
(MinAvaiSpace) Strategy (Fig. 4) instead of MaxAvaiSpace 
Strategy. When there are more than one VM with type l, 
deployed with the same product type as customer request c 
required, the VMs with enough available space to serve c 
are selected. Then request c is scheduled to the machine 
with the minimum available space (Best-fit manner) (Step 
9). The rest of steps are the same as Algorithm 1.  

V. PERFORMANCE EVALUATION 
We present the performance results obtained from an 

extensive set of experiments. We have compared our 
algorithms with the scheduling strategy used by current SaaS 
providers such as Compiere, i.e., ProfminVio.  In following 
sections, we first describe our experiment methodology, 
followed by performance metrics and detailed QoS 
parameters description. In subsequent sections, we present 
the analysis of the results showing the impact of the 
customer-side QoS parameters - (i) request arrival rate, (ii) 
proportion of upgrade request; and SaaS providers’ side 
parameters - (i) service initiation time, (ii) penalty rate.   

A. Experimental Methodology 
CloudSim [11] is used to simulate the cloud computing 

environment that utilizes our proposed algorithms for 
resource allocation. We observe the performance of the 
proposed algorithms from both customers’ and SaaS 
providers’ perspectives. From customers’ perspective, we 
observe how many SLAs are violated. From SaaS providers’ 
perspective, we observe how much cost reduced and how 
many VMs are initiated. Therefore, there are three 
performance measurement metrics: total cost, number of 
initiated VMs, and percentage of SLA violations.  All the 
parameters used in the simulation study are given in 
following sections.  

1) Customers’ Side 
We examine our algorithms with 1000 customers. From 

customer side, two parameters (arrival rate and number of 
company upgrade) are varied to evaluate their impact on the 
performance of our proposed algorithms. Since there is no 
available workload specifying these parameters, we use 
normal distribution (standard deviation = (1/2)x mean) to 
model all parameters, except request arrival rate, which 
follows Poisson distribution. 

• Five different types of request arrival rate are used 
by varying the mean from 200 to 650 customers per 
second. 

• Five different sets of company request types are used 
by varying the mean from 20% to 80% of companies 
request upgrade service in order to vary the portion 
of service request type. 

2) SaaS Providers’ Side 
The SaaS provider offers three types of software service 

products, and also three types of account types (Table 1). 
The cost per hour for using a VM (PriVM) in self-hosted VM 
follows the price schema of Amazon EC2 [14], because it is 
easier for SaaS provider to extend to public Cloud and actual 
cost of self-hosted VMs is less expensive than the price 
schema we are using. Resource price which are used for 
modeling VMs are shown in Table III.  

• The five different types of average service initiation 
time are used in the experiment, and the mean 
service initiation time varied from 5 minutes to 15 
minutes. The mean of initiation time is calculated by 
conducting real experiments of 60 samples on 
Amazon EC2 [14] done for four days (2 week days 
and 2 weekend days) by deployed different edition 
of products. The service initiation time is varied 
using normal distribution. 

• The penalty cost (the same as in Eq. 5) is modeled 
by Eq. (5) (6) (7).  It depends on the request type, 
product type and account type. The mean of Penalty 
Rate (β) is varied from value 2 (very low) to value 
15 (very high).  

TABLE III.  THE SUMMARY OF VM PRICE 

VM Type Price($/hour) 
Small 0.085 

Medium 0.34 
Large 0.68 

B. Impact of QoS parameters 
We compare our proposed algorithms by examining the 

impact of QoS parameters on the performance metrics. All of 
results present the average obtained by 5 experiment runs. In 
each experiment, we vary one parameter, and the rest 
parameters are given constant mean value. The constant 
mean values are: arrival rate=1000 requests/sec, other 
parameters, and penalty rate factor (r) =10. In the following 
sections, we examine various experiments by varying both 
customer and SaaS provider side’s SLA properties to analyze 
the impact of each parameter. The mean response time which 
is used to measure the violation equals 5 if the request type is 
‘first time rent’, equals 10 if the request type is ‘upgrade 
product’ and 3 when the request type is ‘add account.’    

 
1) Impact of arrival rate variation 

To observe the impact of arrival rate in our algorithms, 
we vary the arrival rate factor, while keeping all other factors 
as the same. All experiments are conducted with 1000 
customers’ requests. It can be seen from Fig. 5, in average 
the algorithm ProfminVMminAvaiSpace performs best to 
reduce about 50% cost by using approximately only 60% 
number of VMs compared with ProfminVio. As Fig. 5c 
shows, when the request arrival rate varies from ‘large’ to 
‘very large’, the number of SLA violations caused by our 
proposed algorithms increases because when large number of 
concurrent requests comes, delaying the response time for 
upgrading services. Similar cost is generated by 
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ProfminVMminAvaiSpace and ProfminVMmaxAvaiSpace, 
and the former one is slightly better than the latter one, 
because it costs less with similar number of VMs but 
generates less number of SLA violations.  Therefore, during 
the variation of arrival rate, the ProfminVMminAvaiSpace   
perfoms best and optimizes the SLA violations in the context 
of resource sharing, where it is impossible to avoid SLA 
violations. 
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   (c).  Percentage of  SLA Violations 

Figure 5.   Impact of arrival rate variation 

2)  Impact of company upgrade frequency variation 
To investigate the impact of different proportion of 

request types (‘first time rent’, ‘upgrade service’) by varying 
the customer upgrade number. As it can be seen from Fig. 6, 
during the variation of number of customer upgrade, the total 
cost of ProfminVio decreases because it reduces number of 
VMs (reduced almost 49% on average) by utilizing the 
already initiated VMs for serving upgrades.  

With given reduction in cost, our proposed algorithms 
cause very less number of violations as can be seen from the 

Fig. 6c, where the overall percentage of SLA violations is 
less than 13%, and only when the company upgrades 
percentage is ‘very high’, the percentage of SLA violations is 
higher than 8%. When the variation in company upgrade 
frequency is low (17% upgrade service requests), 
ProfminVMmaxAvaiSpace causes more SLA violations due 
to the disadvantage of MaxAvaiSpace Strategy. In the 
contrary, when the company upgrade frequency is very high, 
ProfminVMminAvaiSpace violates more requests because 
space has been occupied by ‘first time rent’ request types, 
leading to long upgrade time and even penalty delay. 

Therefore, when large numbers of requests are ‘first time 
rent’, the algorithm ProfminVMminAvaiSpace and 
ProfminVMminAvaiSpace cost less with less number of 
VMs, and with a bit more SLA violations compare with 
ProfminVio (no violation).  
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Figure 6.   Impact of  number of upgrade requests 
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3) Impact of initiation time variation 
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     Figure 7.   Impact of  initiation time variation 

The service initiation time also includes the VM 
initiation time for deploying software service as requested.  
Fig. 7 shows how the variation in service initiation time after 
accepting a company request on the SaaS provider’s cost. 
When the initiation time varies from ‘very short’ to ‘very 
long’, the total cost of all algorithms increased slightly. The 
ProfminVio is impacted more because it initiated more VMs. 
The average SLA violation percentage of our algorithms is 
less than 13% When the initiation time is ‘very short’ and 
‘very long’, the algorithm ProfminVMminAvaiSpace and 
ProfminVMminAvaiSpace generate a similar number of 
violations, because initiation time delay is the same for both 
of the algorithms. 

 
 
 
 

4) Impact of penalty rate variation 
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Figure 8.   Impact of  penalty rate variation 

We investigate how penalty rate (β) impacts our 
algorithms. It can be observed from Fig. 8 that 
ProfminVmMinAvaiSpace and ProfminVmMaxAvaiSpace are 
impacted when varying the penalty rate factor because they 
schedule customer requests with shared resources. The 
penalty cost of algorithms increases during variation of the 
penalty rate due to SLA violation increases because of 
resource sharing between multiple customers. However, 
when the SLA violation is very low the maximum 
percentage is less than 2.5%. In conclusion, Fig. 8 a and b 
show that our algorithms minimize the cost although penalty 
cost is increasing during penalty rate variation. 

VI. CONCLUSION AND FUTURE WORK 
In Cloud computing environments, primarily three types 

of on-demand services are available for customers i.e. 
Software as a Service, Infrastructure as a Service and 
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Platform as a Service. This paper focused on scheduling 
customer requests for SaaS providers with the explicit aim of 
cost minimization with dynamic demands handling. To 
achieve this goal, we answered questions raised in the 
introduction section by using mapping and scheduling 
mechanisms to deal with the customer side dynamic 
demands and resource level heterogeneity. Thus, we 
implemented three cost driven algorithms which considered 
various QoS parameters (such as arrival rate, service 
initiation time and penalty rate) from both the customers’ 
and the SaaS providers’ perspective. Simulation results show 
that on average, the ProfminVMminAvaiSpace algorithm 
optimized cost savings better when compared to the other 
proposed algorithms.  

In building on the research undertaken in this paper in the 
future, we will analyze ways to increase the efficiency of the 
algorithms in terms of total profit and shall also consider the 
SLA negotiation process in Cloud computing environments 
to improve customer satisfaction levels. We would also like 
to add different types of services and other pricing strategies 
such as spot pricing to increase the profit for service 
providers. Moreover, investigating the knowledge based 
scheduling for maximizing a SaaS provider’s profit to 
improve our algorithms’ time complexity. Moreover, we will  
look into the penalty limitation by considering system 
failures. 
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