
G-Monitor: A Web Portal for Monitoring and Steering
Application Execution on Global Grids

Martin Placek and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
Email: mplac@students.cs.mu.oz.au and raj@cs.mu.oz.au

Abstract. As Grids are emerging as the next-generation computing platform, the need for
Web-based portals that hide low level details of accessing Grid services for deployment and
execution management of applications is increasing. We have responded to this requirement
by developing an easy to use, lightweight, scalable, web portal called G-Monitor that allows
the user to monitor, control, and steer execution of application jobs on Global Grids. Unlike
related systems, the users of G-monitor delegate the responsibility of selection of appropriate
resources for execution of their application jobs to the broker.

1 Introduction

Grids provide the infrastructure to harness a
heterogeneous environment comprising of geo-
graphically distributed computer domains, to
form a massive computing environment through
which large scale problems can be solved. For
this to be achieved, Grids need to support various
tools and technologies that can support: security,
uniform access, resource management, schedul-

ing, application composition, computational
economy and accounting [3][7]. Additionally,
Grids need provide ubiquitous user-interface that

hides complexities associated with the deploy-
ment and management of execution of applica-
tion jobs on distributed resources.

A sample wide-area Grid computing environ-
ment is shown in Figure 1. In this environment,
the Grid consumers interact with GRBs (Grid
Resource Brokers) such as Nimrod-G [7] respon-
sible for scheduling applications on distributed
resources based on their availability, cost, capa-

bility, and user-specified QoS (Quality of Ser-
vice) requirements. The users need a pervasive
interface that allows them to monitor, control,

Figure 1: A Sample Grid computing Environment and key components.

and steer the execution of their applications with
ease. To serve this need we propose a Web-based
portal, called G-monitor, which is developed as
part of the Gridbus project [8].

G-Monitor not only aims to provide an easy to
use interface, but also a lightweight interface.
Unlike heavyweight GUI (graphical user inter-
face) applications, Web-based portals provide a
pervasive and light-weight interface. In addition,
exporting GUI-based application interfaces from
a remote resource to the user desktop is infeasi-
ble when exposed to low-bandwidth and high-
latency wide area network environments. We
have already experienced such difficulties with a
simple Nimrod-G monitoring client implemented
as GUI application.

G-Monitor interacts with the Nimrod-G GRB

(Grid Resource Broker), which is implemented
using low-level services provided by middleware
such as Globus [4] and Legion [5]. It provides a
consistent interface that is easy to use, enabling
the end-user to monitor, control, and steer execu-
tion of application jobs running within the Grid
environment. G-Monitor is flexible enough to be
run from anywhere without the need for custom
client software. It enables the user to:

1. Retrieve and set QoS (quality of service)

parameters, such as
• Deadline, budget, optimisation preferences

2. Monitor/Control Jobs Information, such as
• Start, Stop, grid node status, execution time

3. Monitor Resource status, such as
• Server name, Host name, Service cost,

status, remarks
4. Monitor Experiment status, such as

• Deadline, Budget, Job status, resource
status

This paper provides an insight into how G-

Monitor fits into the Grid Infrastructure and how
it interacts with surrounding components. We
discuss G-Monitor’s architecture, design, func-
tionality, implementation, application and con-
clude by providing possible future enhancements.

2 Related Work

A number of projects have explored development
of toolkits for development of Grid portals and
construction of application specific portals. Some
representative efforts include GridPort [9] and

HotPage [10] from San Diego Supercomputing
Centre, GPDK (Grid Portal Development Kit)
[14] from Lawrence Berkeley National Labora-
tory, Legion portal [18] from the University of
Virginia, GRB portal [13] from University of
Lecce, SGE Technical Portal [11] from Sun
Microsystems, and PBSWeb[12] from the Uni-
versity of Alberta. GridPort and GPDK allow
construction of application-specific portals by
providing generic interfaces/libraries for access-
ing Grid resources using Globus. Legion portal
provides an interface to Legion Grid infrastruc-
ture. As these toolkits provide an interface to
low-level Grid services, the users of portals con-
structed using them are responsible for manually
identifying resources that are suitable for running
their applications and deploying them. The same
is the case with the GRB portal as it also pro-
vides Web-based interface to Grid resources
running Globus and again users are responsible
for selection of suitable resources for the execu-
tion of their applications. Unlike these systems,
the unique aspect of G-monitor is that it has been
designed to provide access to high-level Grid
services (e.g., the Nimrod-G broker and Gridbus
scheduler). As high-level Grid services (e.g.,
Nimrod-G) are in turn implemented using low-
level Grid services (e.g., Globus), they hide is-
sues related to the identification of resources that
are suitable for running user applications and
their aggregation.

SGE Portal and PBSWeb basically provide

Web-portal for accessing cluster resources man-
agement systems, Sun Grid Engine (SGE) and
PBS (Portal Batch System) respectively.

3 Architecture and Design

This section has been split up into the following
two sections:

• Architecture: In this section we get an
understanding as to how G-Monitor fits
into the Grid Architecture.

• Design: We take a look at how G-
Monitor itself works, detailing the main
modules which make up the implemen-
tation of G-Monitor. An account of how
G-Monitor’s modules interact is also
provided via the use of a work-flow ex-
ample.

Nimrod G -- Grid Resource Broker (GRB)

Applications

Nimrod Parameter
ProgrammingInterface

G-Monitor

Globus Client
Interface

Globus Client
Interface

Globus Client
Interface

Grid Node

Globus Server Interface

Workstation

Grid Node

Globus Server Interface

Grid Node

Globus Server Interface

ServerCluster

Figure 2: G-Monitor : Grid Architecture.

 3.1 Architecture

The architecture of G-Monitor and its interaction
with other components within a Grid Architec-
ture[19] framework is shown in Figure 2. The
user is able to start experiments with the use of
“Applications” which interface into Nimrod G
using the “Nimrod Parameter Programming In-
terface”. Once the user has started their experi-
ment they are able to monitor and control their
experiment with the use of G-Monitor. G-
Monitor is able to provide a high level interface
by utilising tools such as Nimrod G and Globus
to handle all the low-level requirements of han-
dling Grid Resources. Nimrod G plays a broker
role by farming out tasks to each grid node using
the “Globus Client Interface”. Globus is used by
Nimrod G for submitting jobs, authentication,
security and gathering information about re-
sources. Grid Resources provide a hybrid envi-
ronment which Globus and Nimrod G play a vital
role in managing and ultimately providing a
unified interface which G-Monitor utilises.

G-Monitor provides a web portal, which is

used by the end-user and therefore is categorised
as a component within the “Applications and

Portals” category. G-Monitor resides on a web
server, which sits between the GRB and the Web
browser. The Grid consumer uses the Web
browser to access G-Monitor's functionality. G-
Monitor serves the users requests by communi-
cating with the GRB. The GRB manages all the
Grid nodes using low-level Grid middleware
services, keeping a detailed database of informa-
tion about the status of the Grid nodes whilst
offering scheduling and farming out facilities.

3.2 Design

The five key components of G-monitor (as
shown in Figure 3) are:

1. Web Server Software: Receives http re-

quests made by the web browser, deter-
mines which of the “Function Modules” to
execute and serves the HTML generated by
the “HTML Generator” back to the web
browser.

2. HTML Generator: Receives calls from
the “Function Modules” to generate HTML
containing specified data. The HTML gen-
erated is then passed to the Web Server
software.

Web Server
Software

GRB Comms

Login

Grid
Resource

Experiment
Status

HTML
Generator

Function Modules

Time Zone

G-Monitor

NimrodG

Web
Browser

Figure 3: G-Monitor : Design.

3. Function Modules: A set of modules

which provide a one-to-one mapping with
the web pages offered by G-Monitor. Func-
tion Modules include:

o Login: Handles user logins
o Grid Resource: Responsible for list-

ing status of all Grid resources.
o QoS Parameters: Enables user to

set QoS parameters and control the
experiment execution.

o Job Information: Provides user
with information relating to each
job.

o Experiment Status: Gives a global
account of how the experiment is
progressing.

4. Time Zone: This module is called by the
login script. Therefore, as the user is log-
ging in, this module will register which
timezone the user is coming from. The
timezone module is then called by various
“Function Modules” which require time
conversion.

5. GRB Communications: Serves requests
from the “Function Modules” by establish-
ing a TCP socket connection with the GRB
to retrieve and serve requested information.

To get a better understanding of the interac-

tion between various components we shall walk
through a work flow example. The user wishes to
retrieve information on the current status of their
experiment and uses the web browser to click on
a link to take them to the page containing this
information. The following events then occur:

1. The Web browser sends the user’s request
off to the Web Server.

2. The Web Server software receives this re-
quest and determines which of the G-
Monitor “Function Module” should be
executed.

3. The “Function Module” analyses the user
requests and calls upon the “GRB
Comms” module.

4. The “GRB Comms” module then initiates a
TCP socket to the GRB server and uses
the GRB protocol (e.g., Nimrod-G job
management protocol [2]) to retrieve in-
formation about the current status of the
user's experiment.

5. Upon receiving the information from the
GRB, the “GRB Comms” module passes
this information back to the calling
“Function Module”.

6. The executing “Function Modules” then
makes a call to the “HTML generator”
which wraps the data in HTML, and
serves it back to the Web Server software.

7. The Web server software then serves the
HTML back to the web browser.

4 Implementation

One of the main aims of developing G-Monitor
was to overcome problems and limitations asso-
ciated with interfaces with heavy bandwidth
requirements. As grid computing is geographi-
cally distant in nature the user is likely to be
exposed to low-bandwidth and high-latency wide
area network environments. In situations such as
these, interfaces which have heavy bandwidth
requirements run into problems regarding appli-

cation’s responsiveness, leaving the user waiting
for information, which by the time is relayed to
the user is out of date. As our aim was to build an
interface that is light weight a web based solution
was proposed, whereby the browser was respon-
sible for building the GUI based upon the HTML
it received from the G-Monitor server. Providing
a web-based portal had the added benefit of ena-
bling the user to access G-Monitor using their
web browser, avoiding the need for installation
of any custom software to access G-Monitor. The
Apache[1] web server was chosen to host G-
Monitor. We utilised Apache’s CGI module to
call scripts that need to be executed on the G-
Monitor server. The scripting language that was
to be used in developing G-Monitor needed to be:
• Strong at Parsing: As we need to parse data

coming from Nimrod G interface.
• Support TCP/IP Sockets: For communica-

tion with the Nimrod G interface.
• Relatively efficient: Gmonitor needs to be

lightweight.
• High level in nature: Easy to maintain, rapid

development.

 The scripting language we decided to use for

was Perl, as it suited our outlined requirements.
G-Monitor is very much a server side based
application with the only exception being a part
of the “Time Zone” module. The “Time Zone”
module makes a use of client side code to deter-
mine which timezone the user is present. The
server side component has been implemented in

Perl and is responsible for processing user re-
quests, gathering data from the Nimrod G inter-
face and generating a combination of HTML and
JavaScript, which is then served back to the end-
user. The JavaScript generated by the server side
is the only client side executed code and is there
to extract user’s local time.

 Refering back to the Design (Figure 3), all
the modules depicted have been implemented
using Perl. The “Login” module is the module
responsible for gathering the user’s local time
and passing it onto the “Time Zone” module.
Therefore the “Login” module serves both
HTML and JavaScript. The “GRB Comms”
module uses Nimrod-G job management proto-
cols [2] for interaction with the Nimrod resource
broker.

During implementation we came across some

hurdles: in particular, time zones. While testing
our system locally there were no time zone dif-
ferences and everything functioned well. Upon
running our system from Baltimore (refer to
section 5 for more detail) we found the timezone
difference between the web browser and the rest
of the system was causing confusion in pages
which contained time related data. The solution
was to create a “TimeZone” module which
would be responsible for registering which time-
zone the user was in and making the time ad-
justments automatically.

Figure 4: G-Monitor Usage during the HPC Challenge Demo @ SC 2002.

To provide a scalable interface, G-monitor al-
lows users to define entity refresh rate and the
number of entities that they are interested in
monitoring at an instance. For example, if an
application contains thousands of jobs, it is pos-
sible for users to define the number of jobs that
they like monitor at a particular instance. The
users can also monitor based on resources and
resource groups.

5 Use Case Study

We have participated in the Global Grid Testbed
Collaboration [15] that setup a world-wide dis-
tributed Grid testbed and demonstrated capabili-
ties of the state-of-the-art Grid technologies and
applications at the SC 2002 conference [16] held
in Baltimore, USA. A demonstration setup de-
picting application deployment and access loca-
tions of various Grid entities is shown in Figure
4. The testbed had resources contributed by par-
ticipating organizations from all over the world.
We had access to most resources in the testbed as
we were demonstrating one of the four Grid
applications as part of this collaboration. As this
collaboration fits to the notion of virtual organi-
sation (VO), we used the Gridbus GMD (Grid
Market Directory) infrastructure to create a VO
registry and added participants as Grid service
providers along with their contributed re-
sources/services and their attributes. G-Monitor
has been deployed on a machine running an
Apache Web Server located in the University of
Melbourne (Australia). G-Monitor was accessed
via a web browser in Baltimore (US), while the
G-Monitor and Nimrod-G modules resided in
Melbourne. The Grid nodes which were then
used in the experiment were scattered across the
world.

We have demonstrated distributed analysis of

brain activity data—captured using the MEG
(Magneto-Encephalo-Graphy) instrument located
in Osaka University, Japan—on Global Grids
using the Nimrod-G broker [7] with the Gridbus
scheduler [17]. The Gridbus scheduler, imple-
mented as a plug-in scheduler for Nimrod-G,
identified resources/services along with their
attributes such as access-price by querying the
GMD. The composition of brain activity analysis
application and the results of its deployment on
the Grid are reported in [17].

We have been able to use the G-Monitor por-
tal to supply the user QoS parameters (deadline,
budget, optimization preference) to the Nimrod-
G broker and start the experiment. We were able
to monitor progress of the experiment including
progress of individual jobs and status of re-
sources. We were also able to steer application
execution by changing QoS requirements during
the demonstration.

In the following sub-sections we will walk
through some user scenarios to demonstrate G-
Monitor's features and its usefulness in monitor-
ing and steering application execution in Grid
environments.

5.1 User sets QoS parameters

In the process of setting up an Experiment the
user has the option to retrieve and set Qos Pa-
rameters using the G-Monitor (Figure 5). The
user is able to set the Deadline, Budget and Op-
timisation preference, upon doing so the user is
returned information regarding the feasibility of
the settings provided. From the same page the
user is also able to start, stop and shutdown their
experiments.

Figure 5: Setting QoS Parameters.

5.2 User experiment status

Once the user has started an experiment, they
will be interested in the progress of their applica-
tion execution. The users can do this by invoking
the "Job Information" and "Experiment status"
G-monitor Web links (see Figure 6).

Figure 6: Job Information and Experiment Status.

The "Job Information" page revolves around

providing information about all individual jobs.
We can see that each job has a status icon associ-
ated with it, giving the user an indication whether
the job is "Ready", "Running", "Completed" or
"Failed". These icons are links allowing the user
to drill down and retrieve more information re-
garding that job and allow them to have the job
restarted.

The "Experiment status" page provides a
summary about the status of the entire experi-
ment. The page is broken down into three main
sections. The first section provides the user with
information about how their experiment is pro-
gressing with respect to: Deadline, Budget and
the time remaining for completion. The second
section summarises the status of all the jobs in
the experiment and displays the number of cur-
rent jobs that are Running, Ready, Completed or
Failed. This section also provides the user with
the option to restart all the failed jobs. The final
section lists all the nodes in the network showing
the user how many jobs have been assigned to
each grid node and the number of jobs that each
node has completed.

5.3 Grid Infrastructure status

Before running the experiment the user may want
to look at what grid nodes are available and how
much they cost. If the user is on a tight budget
and all the cheaper resources are down, they may
decide to wait for them to come back up before
starting to execute their experiment. The "Re-

sources" page (see Figure 7) contains a table
listing all the resources available to the user and
provides information regarding the name of the
server as defined within the Nimrod-G environ-
ment, the hostname, cost and its status.

6 Conclusion

In this paper we have identified the need for
Web-based portals that hide low level details of
accessing Grid services for deployment and exe-
cution management of applications. We devel-
oped a Web portal called G-Monitor that allows
the user to monitor, control, and steer execution
of application jobs on Global Grids. Unlike re-
lated systems, G-monitor provides web-based
interface to high-level Grid service (the Nimrod-
G broker). That means the users of G-monitor
delegate the responsibility of selection of appro-
priate resources for execution of their application
jobs to the broker. We have used G-monitor
successfully in a number of Grid demonstrations
including the SC 2002 HPC challenge as part of
the Global Grid collaboration.

Some possible future developments for G-

Monitor are as follows:
• Provide a graphical plot of how their ex-

periment is progressing. eg: A plot that is
updated every time delta showing its budget,
number of jobs completed etc., giving the
user a better idea as to the current status of
the experiment.

Figure 7: Resource Status.

• Provide a configuration page whereby the

user is able to personalise G-Monitor for
their environment. Example: Setup default
Nimrod-G server, number of jobs per page,
etc.

Availability

The G-Monitor software with source code can be
downloaded from the Gridbus project website:

http://www.gridbus.org/

Acknowledgement

We would like to thank participants in the
SC2002 Global Grid Testbed Collaboration for
providing us access to the resources that have
made large scale experiments possible. We thank
Anthony Sulistio and Srikumar Venugopal for
their comments on the paper.

References

[1] Apache Web Server, http://www.apache.org/

[2] D. Abramson et. al., Using Application Pro-
gramming Interface, Chapter 9, EnFuzion
Manual, 2002. Available at:
http://www.csse.monash.edu.au/cluster/enFuzi
on/api.htm

[3] I. Foster and C. Kesselman (editors), The Grid:
Blueprint for a Future Computing Infrastruc-
ture, Morgan Kaufmann Publishers, San Fran-
cisco, CA, USA, 1999.

[4] I. Foster and C. Kesselman, Globus: A Meta-
computing Infrastructure Toolkit, International
Journal of Supercomputer Applications, Vol-
ume 11, Issue 2, 1997.

[5] A. Grimshaw and W. Wulf, The Legion Vision
of a Worldwide Virtual Computer, Communi-
cations of the ACM, vol. 40(1), January 1997.

[6] NeuroGrid Project,
http://www.gridbus.org/neurogrid/

[7] R. Buyya, D. Abramson, and J. Giddy, An
Economy Driven Resource Management Archi-
tecture for Global Computational Power
Grids, Proceedings of the 2000 International
Conference on Parallel and Distributed Proc-
essing Techniques and Applications (PDPTA
2000), Las Vegas, USA., June 2000.

[8] The Gridbus Project, http://www.gridbus.org

[9] M. Thomas, S. Mock, J. Boisseau, M. Dahan,
K. Mueller, D. Sutton, The GridPort Toolkit
Architecture for Building Grid Portals, Pro-
ceedings of the 10th IEEE International Sym-
posium on High Performance Distributed
Computing, Aug 2001.

[10] NPACI HotPage -- https://hotpage.npaci.edu/

[11] Sun, Sun Grid Engine Portal,
http://www.sun.com/solutions/hpc/pdfs/TCP-
final.pdf

[12] G. Ma and P. Lu, PBSWeb: A Web-based
Interface to the Portable Batch System, 12th
IASTED International Conference on Parallel
and Distributed Computing and Systems
(PDCS), Las Vegas, Nevada, U.S.A., Novem-
ber 6-9, 2000.
http://www.cs.ualberta.ca/~pinchak/PBSWeb/

[13] G. Aloisio, M. Cafaro, P. Falabella, C. Kes-
selman, R. Williams, Grid Computing on t he
Web using the Globus Toolkit, Proceedings of
the 8th International Conference on High
Performance Computing and Networking
Europe (HPCN Europe 2000), Amsterdam,
Netherlands, May 2000.

[14] J. Novotny, The Grid Portal Development Kit,
Special Issue on Grid Computing Environ-
ments, The Journal of Concurrency and Com-
putation: Practice and Experience (CCPE),
Volume 14, Issue 13-15, Wiley Press, Nov.-
Dec., 2002.

[15] Global Grid Testbed Collaboration -
http://scb.ics.muni.cz/static/SC2002/

[16] SC 2002, International Conference on High
Performance Networking and Computing, No-
vember 16-22, 2002. http://www.sc-
conference.org/sc2002/

[17] R. Buyya, S. Date, Y. Mizuno-Matsumoto, S.
Venugopal, and D. Abramson, Composition of
Distributed Brain Activity Analysis and its On
Demand Deployment on Global Grids, Techni-
cal Report, Dept. of Computer Science and
Software Engineering, The University of Mel-
bourne, Australia, February 2003.

[18] A. Natrajan, A. Nguyen-Tuong, M. Humphrey,
M. Herrick, B. Clarke, A. Grimshaw, The Le-
gion Grid Portal, Special Issue on Grid Com-
puting Environments, The Journal of Concur-
rency and Computation: Practice and Experi-
ence (CCPE), Volume 14, Issue 13-15, Wiley
Press, Nov.-Dec., 2002.

[19] R. Buyya, Economic-based Distributed Re-
source Management and Scheduling for Grid
Computing, Ph.D Thesis, School of Computer
Science and Software Engineering, Monash
University, Australia, April 2002.

